Information and Software Technology 117 (2020) 106197

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The missing link — A semantic web based approach for integrating 7))

Check for

screencasts with security advisories e

Ellis E. Eghan®*, Parisa Moslehi? Juergen Rilling?, Bram Adams"

2 Concordia University, Montreal, Canada
b Polytechnique Montreal, Montreal, Canada

ARTICLE INFO ABSTRACT

Keywords:

Crowd-based documentation
Mining video content

Software security vulnerabilities
Software dependencies
Software traceability

Semantic knowledge modeling
Semantic web

Context: Collaborative tools and repositories have been introduced to facilitate open source software develop-
ment, allowing projects, developers, and users to share their knowledge and expertise through formal and informal
channels such as repositories, Q&A websites, blogs and screencasts. While significant progress has been made in
mining and cross-linking traditional software repositories, limited work exists in making multimedia content in
the form of screencasts or audio recordings an integrated part of software engineering processes.

Objective: The objective of this research is to provide a standardized ontological representation that allows for
a seamless knowledge integration of screencasts with other software artifacts across knowledge resource bound-
aries.

Method: In this paper, we propose a modeling approach that takes advantage of the Semantic Web and its
inference services to capture and establish traceability links between knowledge extracted from different resources
such as vulnerability information in NVD, project dependency information from Maven Central, and YouTube
screencasts.

Results: We performed a case study on 48 videos that illustrate attacks on vulnerable systems and show that
our approach can successfully link relevant vulnerabilities and screencasts with an average precision of 98%
and an average recall of 54% when vulnerability identifiers (CVE ID) are explicitly mentioned in the metadata
(title and description) of videos. When no CVE ID is present, our initial results show that for a reduced search
space (for one vulnerability), using only the textual content of the image frames, our approach is still able to link
video-vulnerability pairs and rank the correct result within the top two positions of the result set.

Conclusion: Our approach not only establishes bi-directional, direct, and indirect traceability links from screen-
casts to these other software artifacts; these links can also be used to guide practitioners in comprehending the
potential security impact of vulnerable components in their projects.

1. Introduction

Sharing knowledge and information through the Internet has
changed the software industry, with open source development becom-
ing a significant part of this industry. In open source software, the de-
velopment process extends beyond organizational and project bound-
aries, with software artifacts (e.g., source code and documentation) be-
ing crowd-sourced and shared through public portals (e.g., GitHub,'
SourceForge,”> and Maven Central®). Collaborative tools and software
repositories (e.g., version control systems, mailing lists, and bug track-
ing systems) support not only the crowd-sourced development but also

* Corresponding author.

its agile development processes that focus on informal, minimal docu-
mentation of a system and its functionalities. As part of this collaborative
environment, developers and users often share their product knowledge
and expertise through different types of media (i.e., software reposito-
ries, Q&A websites, blogs, and multimedia documentation) [1].

One media type which has gained popularity in recent years are
screencasts. They are typically created by the crowd and used to doc-
ument different aspects of a system, such as: explaining how specific
system features work, document an observed bug in a system, provide a
workaround for a known problem, or demonstrate security issues caused
by a known vulnerability. Screencasts deliver their content in the form of

E-mail addresses: e_eghan@encs.concordia.ca (E.E. Eghan), p_mosleh@encs.concordia.ca (P. Moslehi), juergen.rilling@concordia.ca (J. Rilling),

bram.adams@polymtl.ca (B. Adams).
! https://github.com/.
2 https://sourceforge.net/.
3 https://search.maven.org/.

https://doi.org/10.1016/j.infsof.2019.106197

Received 5 March 2019; Received in revised form 26 September 2019; Accepted 30 September 2019

Available online 3 October 2019
0950-5849/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.infsof.2019.106197
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.106197&domain=pdf
mailto:e_eghan@encs.concordia.ca
mailto:p_mosleh@encs.concordia.ca
mailto:juergen.rilling@concordia.ca
mailto:bram.adams@polymtl.ca
https://github.com/
https://sourceforge.net/
https://search.maven.org/
https://doi.org/10.1016/j.infsof.2019.106197

E.E. Eghan, P. Moslehi and J. Rilling et al.

audio (through a narrator), video (image frames), and textual metadata
(e.g., subtitles, title, description, publish date). For example, screen-
casts uploaded on crowd-based online video portals or repositories (e.g.,
YouTube* or Vimeo®) are used to illustrate how an attacker can exploit
a known vulnerability in a system, or how a vulnerable API might in-
troduce security exploits in a client application. Screencasts not only
benefit from their ability to deliver dynamic content through images,
text, and speech but also that they are mostly created by the crowd who
make new content available as a product evolves, or certain features
gain popularity among the user base.

At the same time, Information Security (IS) has emerged as an es-
sential part of software engineering best practices [2]. Specialized advi-
sories or Security Vulnerability DataBases (SVDBs), such as the National
Vulnerability Database (NVD),° have been introduced in response to the
increasing number of known software vulnerabilities. Vulnerabilities are
no longer limited to individual projects or computers, but often affect
millions of computers and even complete software ecosystems. SVDBs
serve in this context as central repositories for tracking software vulnera-
bilities and potential solutions to resolve them. However, vulnerabilities
and their exploits are only described in these repositories in a textual
format, lacking hands-on instructions on how to replicate or fix a known
vulnerability.

While these global repositories (e.g., video portals, security vulner-
ability databases) have been widely adopted by industry to support col-
laborative software development and knowledge sharing, they also in-
troduce new challenges. These repositories often remain information si-
los — a situation where a repository is typically not directly linked with
another one [3]. For example, source code stored in versioning repos-
itories may contain vulnerabilities already reported in SVDBs. How-
ever, without having a link between the source code and vulnerabil-
ity databases, developers must manually search individual repositories
for relevant information or artifacts. A major challenge when establish-
ing traceability links among these repositories is the lack of a common,
standardized semantics and knowledge representation that is applicable
across repository boundaries.

The objective of our research is therefore twofold: 1.) We discuss how
a standardized knowledge representation with well-defined semantics
can address the integration and linking of these knowledge resources, as
well as 2.) allow for the introduction of novel types of software analytics
that take advantage of such a unified knowledge base.

In our prior work [4], we introduced our SEcurity Vulnerability
ONTology (SEVONT) and Software Build System Ontology (SBSON)
ontologies to model the domain of SVDBs and project dependencies,
respectively. We also introduced a Security Vulnerabilities Analysis
Framework (SV-AF), which is a semantic modeling approach that estab-
lishes traceability links between the NVD security database (modeled by
SEVONT), Maven dependency repository (modeled by SBSON), and the
source code of projects (modeled by SEON [5]).

The research in this paper is a continuation of our previous work on
semantic modeling and tracing of software security vulnerabilities. We
extend our existing knowledge base with a video ontology by integrating
audio, video (textual cues in image frames) and metadata from screen-
casts published on YouTube with software dependency and security-
related knowledge from our existing SV-AF approach. We also establish
bi-directional traceability links from screencasts to NVD security vul-
nerabilities and infer indirect traceability links between screencasts and
Maven project dependencies by taking advantage of our existing trace-
ability links (in SV-AF) between NVD and Maven Central. We argue that
these links allow us to enrich existing vulnerability information that can
be further used to provide practitioners with a different type of vulner-
ability analysis services. We also discuss several usage scenarios, where

4 https://www.youtube.com/.
5 https://vimeo.com/.
6 https://nvd.nist.gov/.

Information and Software Technology 117 (2020) 106197

developers watching a screencast could be notified that an API shown
in a screencast contains known vulnerabilities or a screencast can be
linked to SVDBs to provide additional instructions on how to replicate
or fix a vulnerability.

It should be noted that the results which we are presenting are
currently not generalizable for all types of videos and vulnerabilities.
Given the diversity of screencasts in terms of their content, length, lan-
guages/dialects being used and, image quality of the videos, our re-
ported results are not generalizable. Instead, this research presents re-
sults from a case study which we conducted as a proof of concept on a
set of screencasts related to software vulnerabilities. We illustrate that
it is indeed possible to link screencasts, which mention a vulnerability
identifier in at least one of its information resources (meta data, image
frames, speech) to a vulnerability in a SVDB. We also show that once
such direct references to vulnerability identifiers are removed, while
more difficult and with lower precision, it is still possible to link vulner-
abilities with screencasts.

The main contributions of this work are as follows:

We introduce our VIDeo ONTology (VIDONT) to capture the seman-
tics of crowd-based online video repositories (e.g., YouTube).

We establish bi-directional traceability links between knowledge
within our SEVONT and VIDONT ontologies; indirect traceability
links are also inferred between VIDONT and SBSON.

We evaluate the accuracy of these direct traceability links between
screencasts and vulnerability information in NVD.

We perform a case study to illustrate the applicability and flexibility
of our modeling approach.

The remainder of this paper is organized as follows: Section 2 mo-
tivates our work. Section 3 summarizes background relevant to our re-
search, followed by Section 4, which introduces the methodology we
used to create our integrated knowledge model. Section 5 discusses our
case study design and findings. Section 6 provides a discussion of po-
tential threats to the validity of our approach. Section 7 compares our
work with related work, followed by Section 8, which concludes the
paper and discusses future work.

2. Problem statement
2.1. Motivating examples

The following two scenarios motivate our research on establishing a
unified representation for integrating screencasts with security advisory
databases by establishing semantic traceability links between them. In
these scenarios, we take advantage of repositories such as NVD, Maven
Central, and YouTube and illustrate the potential benefits of these links.
NVD and Maven Central are widely adopted by the software engineering
community to capture software vulnerability and project dependency
metadata. YouTube, on the other hand, is one of the most popular online
video sharing platforms to which 400 h of video, related to a vast variety
of subjects, are uploaded per minute [6]. Studies suggest that YouTube
provides a crowd-based online platform that allows people who are ex-
perts in a domain to share their knowledge with novices [7]. Also, de-
velopers create screencasts as an alternative to blogging, since 1) they
would prefer learning by videos and 2) they find it easier to express and
share their tacit knowledge through screencasts [7].

Scenario #1: A fictional developer, called Bob, performs a YouTube
search’ for a video tutorial on how to use the Commons FileUpload®
library in his project. From the search results, he selects the highest

7 The query “commons-fileupload” using the YouTube search engine was per-
formed in June 2018. Note that given the same key words, YouTube may return
different numbers of videos over time due to the addition of new and more
relevant videos.

8 https://commons.apache.org/proper/commons-fileupload/.

https://www.youtube.com/
https://vimeo.com/
https://nvd.nist.gov/
https://commons.apache.org/proper/commons-fileupload/

E.E. Eghan, P. Moslehi and J. Rilling et al.

Screencast showcasing
how to use a library/API

Bob A

-~

- —_
- —
R e e e o o o o e e e o e e = = =

Information and Software Technology 117 (2020) 106197

An NVD entry (CVE ID)
that describes a
vulnerability

A

-

Missing links between NVD entries and

relevant YouTube screencast

Fig. 1. Overview of Scenario #1.

;‘3%—

—>| AnNVDentry (CVEID) [€ ===~

that describes a
vulnerability

Bob
A

- . - -
—
M e e e e e e e e o o oEm o oam owm ee Em e e

= === Screencast showcasing
how to exploit the
vulnerability

A

”
-

ou

_—

Missing links between NVD entries and

relevant YouTube screencast

Fig. 2. Overview of Scenario #2.

ranked video,” which has close to 60,000 views and 255 likes. Bob
finds the video useful and reuses the same API in his project by repli-
cating the steps shown in the screencast. However, Bob (and most likely
even the screencast producer) is unaware that the version of the library
used in the video contains three known security vulnerabilities (CVE-
2014-0050, CVE-2016-3092, and CVE-2016-1,000,031)'° that are al-
ready published in the NVD repository (see Fig. 1). As a result, any
developer who includes this library version in their projects based on
the recommendation of YouTube tutorials (on how to perform a pro-
gramming task) are unknowingly risking the security of their project.
To identify possible impacts of security vulnerabilities, developers must
manually identify and compare the projects mentioned in a video with
vulnerable projects found in NVD entries.

Further analysis of the Commons FileUpload library shows that the li-
brary is currently directly used by more than 1800 other OSS libraries'!
within the Maven Central repository, further illustrating that not only
Bob but also other developers and API users are often unaware of known
vulnerabilities.

Scenario #2: Bob is a developer who uses Apache Struts'? in his
project and wants to know how exactly an Apache Struts vulnerabil-
ity can exploit his system, or how to patch this vulnerability. He uses
NVD to check if any vulnerabilities for Apache Struts exist. However,
while the vulnerability information exists in NVD,'? it does not provide
enough detailed step-by-step instructions for Bob on how the vulnerabil-
ity can be exploited (or patched). As a result, he uses different keywords
from the NVD vulnerability description to manually search the Inter-
net for such instructions. He finds several screencasts on YouTube,'*
that might demonstrate Apache Struts vulnerabilities. Traditional video
searches rely on indexing of available metadata provided by the video
creator (e.g., title, comments). The challenge for Bob is now to identify
the video(s) that are most relevant to this vulnerability (see Fig. 2).

9 https://www.youtube.com/watch?v=4yb16ITxbM8&t=266s.

10 https://nvd.nist.gov/vuln/search/results?adv_search=true&cpe=cpe%3a%
2fa%3aapache%3acommons _fileupload%3al.3.

11 https://mvnrepository.com/artifact/commons-fileupload/commons-
fileupload/1.3.

12 https://struts.apache.org/.

13 https://nvd.nist.gov/vuln/detail/CVE-2017-9805.

14 https://www.youtube.com/watch?v=Aaglpe4A27A.

As illustrated by these two scenarios, developers often resort to a
variety of knowledge resources, including informal resources such as
screencasts and video tutorials when trying to comprehend and analyze
software systems. These resources allow developers to share details such
as implementation approaches, practical overview of concepts and the-
ories, and personal development experiences [8]. Though many screen-
casts and video tutorials exist, they are rarely linked with other software-
related knowledge resources, therefore making it difficult to locate the
appropriate resources.

Moreover, an adversary can exploit a system vulnerability in differ-
ent ways, which is also referred to as a system’s attack surface [9]. For
example, when a vulnerable API can be used in different projects, its
attack surface can differ significantly depending on a project context,
and different scenarios might exist on how the vulnerability can be ex-
ploited. An advantage of screencasts compared to traditional documen-
tation is that screencasts are typically generated independently from
each other by the crowd, increasing, therefore, the chances that differ-
ent screencasts will cover potentially different attack/exploit scenarios
for a given vulnerability. Providing such a broader coverage of the at-
tack surface can provide additional insights on vulnerabilities, their im-
pacts and illustrate how to patch/fix these when they occur in different
contexts (e.g., environments, usage scenarios).

2.2. Research objective

The objective of this research is to introduce a standardized represen-
tation and shared semantics of software and other related artifacts found
in heterogeneous knowledge resources. More specifically, we introduce
VIDONT, an ontology for capturing the semantics of crowd-based on-
line video repositories and integrate it with our existing SEVONT and
SBSON ontologies [4]. This knowledge integration will not only provide
developers with direct access to vulnerability information described in
a screencast content, but also allow tracing of vulnerability descriptions
to relevant screencasts and library dependency information. Further-
more, our approach also allows developers to identify screencasts that
demonstrate such attacks and provides developers whose projects might
directly or indirectly (e.g., through Maven dependencies) be exposed to
vulnerable libraries with insights and direct access to information on
how to mitigate such potential vulnerabilities.

https://www.youtube.com/watch?v=4yb16lTxbM812t=266s
https://nvd.nist.gov/vuln/search/results?adv_search=true12cpe=cpe\0453a\0452fa\0453aapache\0453acommons_fileupload\0453a1.3
https://mvnrepository.com/artifact/commons-fileupload/commons-fileupload/1.3
https://struts.apache.org/
https://nvd.nist.gov/vuln/detail/CVE-2017-9805
https://www.youtube.com/watch?v=Aaglpe4A27A

E.E. Eghan, P. Moslehi and J. Rilling et al.

Therefore, in this paper, we aim to answer the following research
question:

» RQ: How accurate are the bi-directional links, between known vul-
nerabilities and screencasts published on YouTube, provided by our
knowledge model?

3. Background
3.1. Crowd-based multimedia documentation

Software users and developers regularly search the Internet for in-
formation and documentation that can help them in completing specific
tasks. A common characteristic of such online documentation found on
the Internet is that it is often created and maintained by many and
viewed by many; hence, these are typically called “crowd-based doc-
uments” [10]. The motivation behind creating crowd-based documents
are manifold, including 1.) for the document creators to gain an online
reputation, 2.) to better understand a new subject by creating examples
that improve one’s expertise by teaching others [7]. Crowd-based doc-
uments can be categorized in two formats: textual and multimedia doc-
uments. Some examples of crowd-based text documentations are blog
posts, emails, Q&A sites, and wikis, whereas screencasts and podcasts
are considered multimedia documentation.

Multimedia documents, and more specifically screencasts, differ
from traditional textual and formal documents, not only in the format
how information is presented to the user, but also how their content is
organized [7]. In what follows, we discuss major screencast character-
istics that make it difficult to integrate screencasts with other types of
software artifacts.

Abstraction level: Screencasts are composed of audio and image
frame components. Sometimes, the audio component contains speech
created by a narrator who explains how a certain task can be done,
while demonstrating it visually through the image frames that capture
the screen of the demonstrated application. Therefore, the content of a
screencast would be unstructured in comparison to other software arti-
facts that contain structured or semi-structured textual content. Further-
more, some screencasts demonstrate a certain task or scenario (e.g., an
attack using a vulnerability) mostly containing high-level information or
descriptions, omitting technical details. Therefore, the content of such
screencasts may differ from the one found in NVD in terms of the vo-
cabulary used for describing the type, severity, affected products, and
references to advisories or solutions. This could result in potential infor-
mation ambiguity and inconsistency among the knowledge resources.

Dynamic vs. Static: Screencasts have “time” as a meta component
that allows for dynamically showing image frames on the screen with a
constant frame rate. In contrast, the content of other textual documents
is static (e.g., descriptions of vulnerabilities in NVD).

Information resources: Security vulnerability screencasts are cre-
ated by security researchers and white hat hackers from around the
world. Various information resources exist in the screencasts’ content
and metadata [7]. The content contains the domain expert’s knowledge
that is captured by image frames, speech, the sequence of GUI events
and user actions (clicking buttons, opening menus, etc.), while the meta-
data contains captions, publish date, creator, comments, etc. However,
the availability and quality of the information resources that come from
the screencasts’ content can vary significantly among screencasts [1].

3.2. Security vulnerabilities

In the software security domain, a software vulnerability refers to
mistakes or facts related to security problems in software, networks,
computers, or servers. Such vulnerabilities represent security risks that
can be exploited by hackers to gain access to system information or
capabilities [11]. Among these systems, reuse of software libraries poses
a significant threat, since vulnerabilities in a single component might

Information and Software Technology 117 (2020) 106197

affect, through their intended reuse, many different systems across the
globe.

Advisory databases (e.g., NVD) were introduced to provide a cen-
tral place for standardizing the reporting of vulnerabilities and to raise
developer awareness about the existence of such vulnerabilities. These
advisory databases rely on the Common Vulnerabilities and Exposures
(CVE),'> a publicly available dictionary for vulnerabilities that allows
for more consistent and concise use of security terminology in the soft-
ware domain. Once a new vulnerability is revealed and verified by secu-
rity experts, information about this vulnerability (e.g., unique identifier,
source URL, vendor URL, affected resources, and related vulnerabilities
information) is added to the CVE database. In addition to the CVE en-
try, each vulnerability will also be classified using the Common Weak-
ness Enumeration (CWE)'® database. CWE provides a common language
to describe and classify software security vulnerabilities based on their
type of weakness. NVD, CVE, and CWE can be considered as being part
of a global effort to manage the reporting and classification of known
software vulnerabilities.

3.3. Dependency management - Maven

Maven, hosted by the Apache Software Foundation, is an open-
source build automation tool used primarily for Java projects. In Maven,
a software project defines its dependence on any of its artifacts as part
of its XML configuration file (also called the POM file), which is stored
in the central repository. Upon the build of a project, Maven dynami-
cally downloads the requested versions of all required Java libraries and
Maven plug-ins from the Maven Central repository into a local cache for
use by the project. The Maven Central repository provides open source
organizations with an easy, free, and secure way to publish their com-
ponents for access by millions of developers. The repository is updated
with new projects and new versions of existing projects that can depend
(in)directly on different versions of the same dependency.

Transitive dependencies: One of the core dependency management
features provided by Maven are transitive dependencies. If project-A de-
pends on project-B, which in turn depends on project-C, then project-C is
considered a transitive dependent of project-A. Part of Maven’s appeal is
that it can manage these transitive dependencies and shield developers
from having to keep track of all build dependencies required to com-
pile and run an application [12]. As a result, one can now just include
a Java library (e.g., Spring Framework) without having to specify the
dependencies of that library oneself.

3.4. Ontologies and semantic web

The Semantic Web has been defined by Berners-Lee et al. as “an ex-
tension of the Web, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation” [13]. It
forms a Web from documents to data, where data should be accessed us-
ing the general Web architecture (e.g., URIs). Using this Semantic Web
infrastructure allows data to be linked, just as documents (or portions
of documents) are already, allowing data to be shared and reused across
application, enterprise, and community boundaries. In a Semantic Web,
data can be processed by computers as well as by humans, including
inferring new relationships among pieces of data. HTML, for instance,
can present information in terms on how information is displayed by
machines to the user, but it lacks the necessary semantics to allow for
further machine interpretation of the displayed facts in terms of their
meanings. The Semantic Web overcomes this limitation by adding se-
mantics to the information, making information machine processable
and linkable. For example, the YouTube video “File Upload in Java
Servlet” used in our motivating example (Scenario #1) has been created

15 https://cve.mitre.org/.
16 https://cwe.mitre.org/.

https://cve.mitre.org/
https://cwe.mitre.org/

E.E. Eghan, P. Moslehi and J. Rilling et al.

by the YouTube contributor “Telusko”. Analyzing the HTML source of
the web page would allow us to identify that a text string “Telusko”
exists, but in contrast to the Semantic Web, HTML does not allow us
to reason or associate that “Telusko” corresponds to the author of the
video.

For machines to understand and reason about knowledge, this
knowledge needs to be represented in a well-defined, machine-readable
language. Ontologies provide a formal and explicit way to specify con-
cepts and relationships in a domain of discourse. The Semantic Web
uses the Resource Description Framework (RDF) as its underlying data
model to formalize the meta-data of real-world resources as subject-
predicate-object triples, which are stored in triple-stores. A resource in
Semantic Web can be anything: a person, project, software, a security
bug, etc. Triple-stores are Database Management Systems (DBMS) for
data modeled using RDF. Unlike Relational Database Management Sys-
tems (RDBMS), which store data in relations (or tables) and are queried
using SQL, triple-stores store RDF triples and are queried using SPARQL
[13]. The RDF data-model is domain independent, and users define on-
tologies using an ontology definition language.

The Web Ontology Language (OWL) [14] is an example of such a def-
inition language and has been standardized by the W3C.!” It supports
the creation of machine-understandable information to enable Web re-
sources to be automatically processed and integrated. The OWL-DL sub-
language, is based on Description Logics (DLs) [15]. DL is a logic-based
formalism using predicate calculus to define facts that can formally
describe a domain. Therefore, DLs are a set of axioms called a TBox
(e.g., DoctorCPerson) and set of facts called ABox (e.g., {Parent(John),
hasChild(John, Mary)}). Both TBox and ABox form a Knowledge Base
(KB) and are often written K = < T, A >. The RDF data-model forms a
graph where nodes (subject, object) are connected through edges (pred-
icates). The SPARQL query language [16] is used to retrieve information
from RDF data-model graphs.

Ontologies vs. Models. A model is “an abstraction that represents
some view on reality, necessarily omitting details, and for a specific pur-
pose” [17]. In SE, ontologies and models try to address the same prob-
lems (representing the software complexity abstractly) but from very
different perspectives. The differences between ontologies and models
often result in different artifacts, uses, and possibilities. For example,
modern SE practices advise developers to look for components that al-
ready exist when implementing functionality, since reuse can avoid re-
work, save money, and improve the overall system quality [18]. In this
example, ontologies can provide clear advantages over models in inte-
grating information that normally resides isolated in several separate
component descriptions. Furthermore, models (e.g., UML) rely on the
closed world assumption, while ontologies (e.g., OWL) support open-
world semantics. OWL, an example ontology language, is a “computa-
tional logic-based language” that supports full algorithmic decidability
in its OWL-DL (description logic) variant. It is not possible to use algo-
rithms supported by OWL (e.g., subsumption) for modeling languages
due to their different semantics. Additional differences between ontolo-
gies and models are reported and discussed elsewhere [19].

3.5. SV-AF: security vulnerability analysis framework

It is generally accepted that inadvertent programming mistakes can
lead to software security vulnerabilities and attacks [11]. Mitigating
such vulnerabilities can become a major challenge for developers, since
not only their own source code might contain exploitable code, but also
the code of third-party APIs or external components used by their sys-
tem. In our previous work [4], we introduced SV-AF to guide developers
in identifying the potential impact of vulnerabilities at both the system
and global level.

17 https://www.w3.org/.

Information and Software Technology 117 (2020) 106197

General
Concepts

/ Relations & \
v Attributes N

S
‘.eo
&/
S/
QQ/
v.

* Domain Spanning Concepts '

Measurements

[change
| couplings

Sec. Vuln. APls Sec.
Traceability | Assessments

Sec. Patches

Domain Specific Concepts

Security Software Build
Vulnerabilities Engineering Systems

System Specific Concepts

Exploits | Source | Issue | Version
DB | Code | Tracking| Control

Maven

NVD 0SVDB Ant ‘ Ivy

Fig. 3. The SV-AF Ontologies Abstraction Hierarchies.

SV-AF uses a bottom-up modeling approach where system-specific
concepts are first extracted, followed by an iterative process of abstract-
ing shared concepts into upper ontologies. To minimize any potential
abstraction error, three Ph.D. students from our lab'® performed a cross-
validation of the abstracted ontology layers, reaching an average inter-
rater agreement of 95%. The disagreements were resolved through fur-
ther discussion. The resulting four-layer modeling hierarchy (Fig. 3) is
based on a metadata modeling approach introduced by the Object Man-
agement Group (OMG),'° with each layer providing a different level of
abstraction in terms of its purpose and design rationale.

General Concepts: Classes in the top layer represent omnipresent
general concepts found in the software evolution and security domain.

Domain-Spanning Concepts: This layer captures concepts that span
across several subdomains (e.g., security databases, video repositories,
and source code).

Domain-Specific Concepts: Concepts in this layer are common
across resources in a domain. At the core of the domain-specific layer,
we have several domain ontologies: (1) Software sEcurity Vulnerabil-
ity ONTologies (SEVONT), (2) Software Evolution ONtologies (SEON)
[5] and (3) Software Build System (Dependencies) ONtologies (SBSON).

System-Specific Concepts: Concepts in this layer extend the knowl-
edge from the upper layers to specific vulnerability databases, tool im-
plementations, or programming languages. For example, the Maven
system-specific ontology will contain concepts found only in the Maven
tool.

SV-AF uses the Probabilistic Soft Logic (PSL) framework [20] to
establish weighted links between ontological models of vulnerability
databases (SEVONT) and software dependency repositories (SBSON).
These traceability links are created based on semantically identical or
similar concepts within the different knowledge sources. In this case,
similarity among SEVONT-SBSON instance pairs are determined based
on the extracted literal information such as name, version and vendor.
Using manually defined rules, the PSL framework computes similarity
weights between all possible instance pairs in the knowledge base (to-
tal of [SEVONT| x |SBSON]| instance pairs). These computed similar-
ity weights, based on a given similarity threshold, are used to infer
owl:sameAs relations between similar instances found in the two on-
tologies. The owl:sameAs construct is a built-in OWL predicate used to
align two concepts from different ontologies. More details on the ontolo-
gies, ontology alignment process, and evaluation of the SEVONT-SBSON
alignment can be found elsewhere [4].

18 http://aseg.encs.concordia.ca.
19 http://www.omg.org/.

https://www.w3.org/
http://aseg.encs.concordia.ca
http://www.omg.org/

E.E. Eghan, P. Moslehi and J. Rilling et al.

Information and Software Technology 117 (2020) 106197

]
You ‘. ,
TUhe ./., \\‘o
[J
Ontology
Alignment

VIDONT

Section 4: Knowledge Modeling

—[_\
N\/D q% SV-AF

SEVONT

~
A 9
D Use Cases:
m_> e Impact analysis screencast API
recommendation
m e Enriching vulnerability

information with crowd-based
SV-AF integrated

knowledge
with VIDONT

Fig. 4. Overview of the overall methodology. SV-AF is extended with ontologies for the domain of Screencast repositories.

4. Methodology
4.1. Overview

The knowledge modelling approach proposed in this paper estab-
lishes traceability links between screencasts (e.g., YouTube) and exist-
ing software vulnerability and dependency knowledge found in SV-AF.
In what follows, we describe how we extend SV-AF with knowledge from
screencasts. Fig. 4 illustrates our overall research methodology and its
major steps.

4.2. Fact extraction process

4.2.1. Fact extraction from video artifacts

Video portals such as YouTube contain videos that are created by the
crowd to document different aspects of software systems. These videos
and screencasts contain different kinds of information, that can be mined
and analyzed to support the linking between video content and other
software artifacts. In what follows, we discuss in more detail the infor-
mation being extracted and the linking opportunities provided by our
approach.

 Speech: If a video has a narrator that describes the content of a

how-to video, the speech content may share similar words with the

image frames shown in the screencast, as well as the relevant entity
in NVD.

O Information extraction: In case closed captioning is enabled for a
video, we extract the screencast’s subtitles using existing tools
(e.g., youtube-dI??). If closed captioning is not available, we au-
tomatically transcribe the spoken text.

O Linking opportunities: If the transcription of a video mentions the
CVE ID of a vulnerability, one can use this CVE ID to link the
video to the relevant NVD entry. However, automatic speech to
text tools will not always transcribe such information accurately.
To improve the accuracy of traceability links, we also take ad-
vantage of Information Retrieval (IR) (see Section 4.3.1) to lo-
cate similarities between artifacts such as the transcribed speech,
NVD entries, and image frames (GUI text).

Image frames: Screencasts capture the interactions with the GUI of

a software application or with a terminal window. As a result, the

textual information of a typical window screen (i.e., a screencast im-

age frame) will often contain corresponding string literals found in

the vulnerability dataset. Fig. 5 illustrates matching string literals

20 https://youtube-dl.org.

between speech, image frame text, and vulnerability description in

NVD. Image frames also capture graphical cues such as icons, frames,

and colors that can be used to identify different parts of the software

application or the environment in which the user is working. Ex-
tracting such graphical cues requires image processing techniques
that will be explored in future work.

O Information extraction: First, we extract image frames of the
screencasts using FFmpeg?' at a rate of 1 frame per second, to
avoid having many repetitive image frames. We then perform
Optical Character Recognition (OCR) [21] on each image frame,
using Google Vision API?? to recognize the text shown in the im-
age frame. This text, which is enclosed within neighboring pixels
on the images, is returned as a sentence or word together with the
coordinates where the words are located on the image frames.

O Linking Opportunities: If an image frame contains a CVE ID, OCR
will be able to extract this CVE ID with high accuracy. Such an
extracted CVE ID can then again be linked to the NVD repository.
In addition, similar to spoken text, we can use the text on the GUI
as an information source to link a video with NVD entries. With
each image frame, we also have its position (timestamp) within
the video, which allows us to directly link external knowledge
resources to the relevant part of the video.

» Metadata: Videos published on YouTube typically include metadata
that can be extracted and analyzed.

O Information extraction: Among the metadata to be extracted are
video title, description, published date, comments, number of
likes and dislikes, number of views, closed captioning (if enabled)
and other information related to the screencast [1].

O Linking opportunities: This metadata often contains important in-
formation that can be added to the video documents to support
the linking of screencast content to NVD vulnerabilities. For ex-
ample, the publication date can be used to help identify vulner-
abilities discussed in a video.

It should be noted that when preprocessing text extracted from the
transcribed speech, image frames, and metadata, we do not remove to-
kens that combine characters and numbers since CVE IDs are composed
of these characters (Fig. 5 contains a sample CVE ID). We, however, ap-
ply tokenization, removal of stop words and punctuation, and perform
stemming to clean up the data before populating the ontology in 4.3.

21 http://ffmpeg.org/.

22 https://cloud.google.com/vision/.

https://youtube-dl.org
http://ffmpeg.org/
https://cloud.google.com/vision/

E.E. Eghan, P. Moslehi and J. Rilling et al.

Information and Software Technology 117 (2020) 106197

l‘E, VE-2017-9805 petail
1

MODIFIED

St r uts I Re m Ote Cod e exe C u t | O n|-m s vulnerability fJas been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result
in further d the information provided.

Date 06-09-2017

Current Defscription

The REST Pluginin Al a(hﬁ tst.l.z\hrough 2.3.x before 2.3.34 and 2.5.x before Z5:

ap XStreamHandler with

an instance of XStregm for dedrialization without any type filtering, which can lead tgfRemote Code Executionjvhen

deserializing XML pakload:

already seen two of the majoifremote R e Ll
ulnerabilities Kadecr M
> » o 017/201
ceEVEZ0T7S60Y
/

1,20P views

B s @00

e 4 &0 & SHARE = SAVE

Metadata

Speech Image Text NVD Description

Fig. 5. Similar string literals in speech, image text, and NVD description.

4.2.2. Fact extraction from vulnerability artifacts

Security databases (e.g., NVD) provide a central place for report-
ing vulnerabilities affecting existing software applications and systems.
Extracting facts from NVD consists of downloading and parsing its vul-
nerability XML feeds.

O Information extraction: In NVD, a vulnerability is identified by its
unique CVE ID. NVD also captures additional vulnerability details,
such as: vulnerability disclosure date, severity score, vulnerability
summary, and sources of information that demonstrate the vulner-
ability. Each vulnerability has a list of affected products associated,
described by its Common Platform Enumeration (CPE)?® a standard
machine-readable format for encoding names of IT products and
platforms.

O Linking opportunities: Screencasts may contain some of the informa-
tion in published vulnerabilities such as the CVE ID and vulnerability
summary. The CVE ID may be found in the video’s title, description,
speech, or image content. Also, the same words that are used in the
description of a vulnerability in NVD may be used in the screencast
data (i.e., speech, images, metadata). Therefore, we extract this in-
formation from the vulnerabilities to be further used in our linking
approach.

4.2.3. Fact extraction from Maven artifacts

Maven artifacts describing the dependencies used by a project are
stored in the Maven Central Repository. Extracting Maven facts consists
of transforming the Maven Central repository index into a list of GAV
(groupld, artifactld, and version) coordinates - the three required ele-
ments to describe every project. The groupld is a unique name amongst
an organization, and the artifactld is generally the name by which the
project is known. Several projects developed by the same organization
or under the same parent project will have the same groupld. The POM
file for each GAV entry is parsed and populated into our knowledge base.

O Information extraction: As stated above, each project release in
Maven Central is identified by its unique GAV coordinate. The POM
file for each GAV entry captures various project details, such as the
project name, dependencies on other project releases, organization,
developers, release date, and links to its repositories (e.g., issue-
trackers and CVS).

O Linking opportunities: The details captured within each project’s
POM file provide several linking opportunities to existing knowledge
bases. For example, project identification details such as the GAV,
project name, or URL can be used to identify project entities in the
textual descriptions of videos based on string matching. They can

23 Common Platform Enumeration - http://cpe.mitre.org.

also be used to identify products affected by vulnerabilities within
the NVD dataset (see [22]). Furthermore, project dependency infor-
mation (using the <dependency> tags) can be used to establish links
to the text extracted from source code samples in videos.

4.3. Knowledge modeling — extending SV-AF with knowledge from
screencast repositories

In this section, we introduce VIDONT, our ontology to capture the
semantics of crowd-based online video repositories (e.g., YouTube). As
part of our knowledge modeling, we then integrate VIDONT with our
existing SV-AF ontologies at the domain level. The integration of VI-
DONT and SV-AF allows not only for knowledge sharing and reuse across
repository boundaries by eliminating traditional information silos these
resources have remained, but also allows for novel types of vulnerability
analysis and documentation approaches.

Fig. 6 provides an overview of the main classes and object proper-

ties across all layers of our knowledge model that are used for linking
screencasts to project vulnerabilities. To improve the readability of this
paper, we denote OWL classes in italic and properties are underlined.
The core concepts used in our model are Vulnerabilities, Videos, and APIs.
A project version that is released to the public or customer is referred
to as a BuildRelease (a BuildRelease can dependOn APIs from other Buil-
dReleases). Different project metadata are captured using the hasName,
hasDescription, hasURL, and hasVersionNumber properties. Whenever
such a project is identified to be affectedBy a Vulnerability, a description
of a vulnerability is publicly disclosed in repositories such as NVD. Each
publicly disclosed vulnerability is issued a unique ID, captured by the
hasVulnerabilityID property.
" Details of existing vulnerabilities, their exploits, and how such ex-
ploits can be mitigated are describedBy Videos provided by Publishers
using video repositories such as YouTube. A publisher isA type of project
Stakeholder. In our model, published videos have information encoded as
Speech and Image frames. Videos have metadata associated such as title,
description, and published date. Keywords and tags for a video are cap-
tured through the label property. Typical for crowd-based videos is that
they allow for Comments and discussions from other users and viewers.
The link between videos and vulnerabilities can be established using a
SimilarityMeasure that measures the relevance of a given video in terms
of covering a known vulnerability. For a complete description of our
ontologies, we refer the reader to our earlier work [4,22].

4.3.1. Ontology alignment and knowledge inferencing

To further improve the knowledge integration between the VIDONT,
SEVONT and SBSON ontologies, we establish semantic traceability links
through ontology alignment. During ontology alignment, identical or

http://cpe.mitre.org

E.E. Eghan, P. Moslehi and J. Rilling et al.

Information and Software Technology 117 (2020) 106197

e SEON
= i (Measurement measures :
= s (stakeholder
g Wlth cees /'

7}

© m< SimilarityMeasure C Developer)
= describedBy
Vulnerability

1 N M "

! affects I : ¢ (Publisher)j«+—has

5 £ g ~ : 3 "

g 8 C Score) QulnerableReIeas same{\s BuildRelease . as has has

S S I 5)

¢ calculatedBy i dependsOr :

: i P : commentsOn @

: -Severity : . .

e AT SecurityDBs.owl i SBSON - build.owl: : ... VIDONT - videos.onl

L o
£ &

28
> o

R SEVONT - nvd.owl

LEGEND:
. Object . subclass_ _instance
property of of

Fig. 6. An overview of concepts and properties in our integrated knowledge model.

Table 1
Ontology Namespaces.

Namespace URL

RDF http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

OWL http://www.w3.0rg/2002/07 [owl#

SBSON http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/build.owl#

SEON http://se-on.org/ontologies/general/2012/02/main.owl#

SEVONT http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/vulnerabilities.owl#
VIDONT http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2018/01/video.owl#
MEASURE http://se-on.org/ontologies/general/2012/02/measurement.owl#

equivalent concepts, properties or facts in multiple ontologies are iden-
tified by analyzing the data captured as part of ontology descriptions
(e.g., labels, comments, attributes and types, relations with other enti-
ties) and by using logical reasoning to infer correspondences. By estab-
lishing these links, we can reduce the semantic gap between the individ-
ual ontologies, which is an essential prerequisite for providing a unified
knowledge model.

In what follows, we discuss in more detail how we use Semantic Web
inference techniques to establish these additional semantic traceability
links between our ontologies. The reasoning services allow us to dis-
cover additional relations to other knowledge and facts captured in our
knowledge base. It should be noted that we omitted the ontology names-
pace prefixes (summarized in Table 1) from our illustrative queries and
rules shown in this section to improve their readability.

SEVONT and VIDONT Ontology Alignment. Screencasts and other
tutorial videos often contain references and keywords related to a vul-
nerability, such as the CVE ID in the video title, description, speech,
or text encoded in image frames. Our alignment process links in-
stances in the two ontologies based on the presence of such refer-
ences and keywords. These vulnerability references are used as tags
during the video data extraction process. For example, the triple
<https://youtu.be/Wewl5fAhnXA> rdfs:label “CVE-2015-0096” repre-
sents a video resource tagged with a CVE ID that was found in its title.
This knowledge can now be used to perform terminology matching, by

aligning instances from the vulnerability and video ontologies. For the
alignment, we use the Semantic Web Rule Language (SWRL)?** to create
the rule in Listing 1, which can now infer links between vulnerability
and video instances.

However, the alignment rule in Listing 1 only applies when a vul-
nerability’s CVE ID is explicitly mentioned in a video. To support cases
where no CVE ID is explicitly mentioned, we complement our alignment
approach with the BM25 probabilistic relevance model [23]. BM25 is a
popular model used in Information Retrieval (IR) to rank a set of doc-
uments based on their relevance to words in a given query. It is based
mainly on the term and document frequency measures. Given a query,
Q, containing keywords qy,..., g,, the BM25 score of a document, D, that
measures the similarity between Q and D is calculated as:

i N tf(g;, D)x(k; +1)
score(D, Q) = Z 7D * i N
D if (g, D) + ki (1= b+ b L)

P
! avgdl

@)

where tf(g;, D) is ¢/ s term frequency in D, df(q;) is the number of docu-
ments containing g;, |D| is the length of D in words, avgdl is the average
length of all documents used in the relevance scoring, N is the total num-

24 https://www.w3.org/Submission/SWRL/.

http://www.w3.org/1999/02/22-rdf-syntax-ns\043
http://www.w3.org/2002/07/owl\043
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/build.owl\043
http://se-on.org/ontologies/general/2012/02/main.owl\043
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/vulnerabilities.owl\043
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2018/01/video.owl\043
http://se-on.org/ontologies/general/2012/02/measurement.owl\043
https://youtu.be/Wewl5fAhnXAce
https://www.w3.org/Submission/SWRL/

E.E. Eghan, P. Moslehi and J. Rilling et al.

Information and Software Technology 117 (2020) 106197

— describedBy(?vuln,?video)

Video(?video), label(?video,?label), Vulnerability(?vuln), hasVulnerabilityID(?vuln,?label)

Listing 1. SWRL rules for aligning CVE facts with the video ontology.

measure-hasMeasureValue

Fig. 7. Ontology alignment based on BM25
relevance scores.

measure:SimilarityMeasure

9
Literal { instance)
4 2

Inferred Reiation,

------ >

-~ ~

Defined Relation
bl L UN

measure:measureThing messure:measureThing

- R Pl =
4 & / \
sevont:Vulnerability rdrtype—— sevontiinstance - widontdescribedBy~ ¥ vidontiinstance ——rdrtype vidont:Video
/ ’
N P N
Sa -7 =

ber of documents indexed, and k; and b are free parameters used to scale
the document term frequency and document length respectively.

BM25 in Ontology Alignment: Using BM25 (Eq. 1), we can de-
rive the relevance score for each vulnerability-video pair. These
derived scores become confidence measures for the alignment
links between a vulnerability-video pair, and are later material-
ized into our knowledge base using the SimilarityMeasure class and
the measure:measuresThing and measure:hasMeasureValue proper-
ties (see Fig. 7). The measure:measuresThing property identifies the
vulnerability and video facts that are being compared, while the
measure:hasMeasureValue property stores the numeric similarity value.
With this new knowledge, the SWRL rule in Listing 2 can be executed
to establish vidont:describedBy relations (similar to those inferred in
Listing 1) between vulnerability and video instances captured by the
SEVONT and VIDONT ontologies.

Given our populated ontologies, it is now possible to infer implicit
knowledge using the describedBy link between a vulnerability and a
screencast. These links are instances where either a CVE ID is explicitly
mentioned in a video (Fig. 8a) or the link is inferred when the similarity
measure between the vulnerability index and video text queries is within
the specified threshold (Fig. 8b).

SBSON and VIDONT Ontology Alignment. Having the SEVONT-
VIDONT alignment and existing SEVONT-SBSON alignment (see
Section 3.5), we are now able to infer indirect traceability links between

VIDONT and SBSON by taking advantage of Semantic Web inferencing
services such as owl:sameAs and owl: TransitiveProperty.

Same-As Inference: The same-as inference is commonly used to align
two semantically equivalent concepts or individuals. For example, in our
prior work [4,22], we used the owl:sameAs property to align vulnera-
ble project releases from the SEVONT ontology to their corresponding
instances in SBSON ontology based on a similarity threshold. Using the
SPARQL query shown in Listing 3, we can now take advantage of this
knowledge to establish indirect links from videos to project releases in
the SBSON ontology (e.g., retrieve metadata of projects affected by a
vulnerability described in a video).

Transitive closure inference: A relation R is said to be transitive if
R(a,b) and R(b,c) implies R(a,c); this can be expressed in OWL through
the owl: TransitiveProperty construct. In SBSON, we define a dependency
between projects using the bi-directional transitive seon :dependsOn
property to allow us to retrieve a list of all releases that have a direct or
transitive dependency on a specified project release, and vice versa. Us-
ing the SPARQL query in Listing 4, we can now establish indirect links
from videos to this project dependency knowledge in the SBSON ontol-
ogy (e.g., to verify if a project transitively uses another project affected
by a vulnerability described in a video).

— describedBy(?vuln,?video)

Video(?video), Vulnerability(?vuln), measuresThing(?measure, ?video), measuresThing(?measure, ?vuln),
hasMeasuresValue(?measure, ?relevanceScore), swrlb:greaterThan(?relevanceScore, thresholdValue)

Listing 2. SWRL rules for aligning CVE facts with the video ontology based on their relevance score.

SELECT ?video ?release ?name ?desc ?version ?url
WHERE {
?vulnerability vidont:describedBy ?video.
7release a sbson:BuildRelease.

#using the same-as links between SEVONT and SBSON release instances

?vulnerability sevont:affectsRelease ?release.

Irelease seon:hasName ?name ; sbson:hasVersionNumber ?version ;
seon:hasURL ?url ; seon:hasDescription ?desc.

Listing 3. SPARQL query returning videos and related project
details.

E.E. Eghan, P. Moslehi and J. Rilling et al.

-

-
CVE-ID describedBy_

CVE-2017-5638

-

publishedDate
03/11/2017

Information and Software Technology 117 (2020) 106197

= —

hasMeasureValue

CVE-2017-5638

Vulnerabilit

-_—

_—

/ description
...Struts2 RCE . we exploit CVE-2017-5638
CVE-2017- the Apache
5638... Struts 2
vulnerability...

Established
Relations

https://youtu.be/8ktpaViakRA

ST meas resTh'n r
measuresThing imilarityMeasure ares Video !

|

|

|

|

|

|

|

|

|

measuresThing Y] . |
SimilarityMeasure I
hasMeasureValue 146 measuresThing.y/ Video)_ur;—ﬂ https://youtu.be/od92kROMnC4 :
L |
/ .

|

|

|

|

|

|

|

—
—_

T describedBy— — — —

_ _Inferred_ _

(b) Alignment when CVE ID not explicitly mentioned in video

Fig. 8. Inferring the describedBy link between vulnerability and screencast instances when a CVE ID is (a) explicitly mentioned in a video, and (b) not mentioned.

SELECT ?video ?release ?dependent
WHERE {

?dependent sbson:hasBuildDependencyOn ?release option (transitive).
?vulnerability vidont:describedBy ?video.

?release a sbson:BuildRelease.

?vulnerability sevont:affectsRelease ?release.

}

using the transitive inference to detect dependencies on a vulnerable release with a video description

Listing 4. SPARQL query returning videos, re-
lated projects, and their dependencies.

5. Case study: CVE-2017-5638

In what follows, we report on results from a case study that we con-
ducted to illustrate the applicability of our approach and to answer our
research question from Section 2.2.

5.1. Case study setup

5.1.1. Dataset

We use a publicly disclosed vulnerability, CVE-2017-5638,%> which
has been reported in the NVD repository as a vulnerability affecting
several Apache Struts®° releases. Our dataset for this case study includes
data from NVD, Maven Central, and YouTube.

Our vulnerability dataset consists of all NVD vulnerability XML feeds
published since 1990. The dataset includes 74,402 unique vulnerabili-
ties that affect 186,212 projects. Our Maven Central dataset consists
of 178,763 unique projects with 1849,756 releases.?’” For our video
dataset, we downloaded 48 YouTube videos related to the CVE-2017-
5638 vulnerability.

% https://nvd.nist.gov/vuln/detail/CVE-2017-5638.
26 https://struts.apache.org/.
27 Dataset last updated 2017-10-23

The videos were selected using search queries developers would
use when manually searching YouTube for videos related to this spe-
cific vulnerability: “CVE-2017-5638”, “CVE-2017-5638 Apache Struts”,
“input validation vulnerability Apache Struts”, and “input validation
vulnerability exploitation”, with input validation corresponding to
the CWE vulnerability category. From these search results, we se-
lected 48 videos that also matched additional selection criteria such
as video length and video resolution. We only selected screencasts
with a length between 20 s and 12 min to ensure that they con-
tain sufficient data in terms of speech and video content and where
the screencast was recorded as High Definition (HD) to allow for
a more accurate information extraction from the image processing
step.

Of the selected 48 videos, 39 videos explicitly mention the CVE ID
in either their title, description or video content. The 9 videos that
do not mention explicitly the CVE ID were manually evaluated to en-
sure they were related to the CVE-2017-5638 vulnerability. Among the
videos only 13 videos have an English narration. Table 2 provides an
overview how many of the videos in our dataset capture the CVE-ID
in the different video artifacts (speech part, image frames, video title,
and video description), with (\/) indicating that the CVE-ID was ex-
plicitly mentioned and (X) indicating the CVE-ID was not mentioned
at all.

https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://struts.apache.org/

E.E. Eghan, P. Moslehi and J. Rilling et al.

Table 2
Classification of the video dataset based on the presence of
CVE ID.

Presence of CVE ID

title description image frames speech # of videos
X X X X 9

v X X X 5

X v X X 3

X X v X 2

v v X X 2

Vv X v X 11

X Y/ v X 5
VooV v x o

v oV v e

5.1.2. Applying our methodology

For all screencasts, we downloaded the audio (speech part) and au-
tomatically transcribed the speech using IBM Watson’s Speech-To-Text
(STT) service. In our previous work [10], we have conducted a compari-
son of different STTs by manually transcribing videos and comparing the
output of the IBM Watson STT tool against those of 4 other tools in terms
of precision and recall values. In this comparison, IBM Watson obtained
the highest precision and recall values (0.75 and 0.88, respectively). We
used FFmpeg to extract image frames from the downloaded videos at a
rate of 1 frame per second (to reduce the number of continuous frames
with duplicate content). Next, we manually checked and removed image
frames at the beginning and end of the screencasts which contain non-
relevant information (e.g., greetings, introducing the YouTube channel
or video creator, inviting people to like/subscribe, etc.) to reduce the
amount of noise in our screencast data set. It should be noted that this
could be also be automated (e.g., by removing the first and last 10 s of
each video. Then we use Google Vision API’s text recognition service to
perform Optical Character Recognition (OCR) and automatically extract
all text from the remaining image frames.

We also automatically extracted the title, description, publication
date, and publisher information from the metadata provided with each
video (if applicable) using the youtube-dl tool. Using a regular expres-
sion, we then searched for the CVE ID in the speech, image text, and
metadata to label each video with a CVE ID and populate our knowl-
edge base.

As part of the next processing step, we create an inverted index using
the extracted text from the vulnerability dataset as our document cor-
pus. More specifically, for this index, we treat each vulnerability as an
individual document, with its own document id and its textual content
being a bag of words. We then apply a simple preprocessing step consist-
ing of case-folding, stop word removal, and stemming before indexing
the document. For our case study, we use the extracted text from the
metadata, images, and speech of our videos as query terms and popu-
late the SimilarityMeasure instances (using the BM25 equation discussed
in Section 4.2.3) for the Top 10 ranked vulnerabilities returned by each
search query. Applying the semantic rules introduced earlier (Listings
1 and Listing 2), we can now automatically infer bidirectional trace-
ability links from the screencast instances to their related vulnerability
instances.

5.1.3. Evaluation measures

For our case study, we evaluate the linking accuracy of our approach.
The objective of this evaluation is to validate whether our modeling ap-
proach is indeed capable of inferring hidden and indirect links between
videos and other software repositories.

As part of our evaluation, we compared the retrieved ranking re-
sults against our video dataset oracle (baseline) that was created using
manually selected and verified videos covering the CVE-2017-5638 vul-
nerability. Since in most cases we only have one relevant result (vulner-
ability) that matches a query (video), we used the position of the first

Information and Software Technology 117 (2020) 106197

1.00 ,
1.0 A 0.96 E precision

N recall

0.81
0.8 A

0.6 A

Scores

0.4

0.2 4

0.00 0.00
speech all

0.0 -
title desc gui

Fig. 9. Precision and recall of our CVE ID alignment, using only video title,
description, image frames (“gui”), speech, or all the above (“all”).

true positive in the search result ranking as our assessment criteria. For
the evaluation, we used the Reciprocal Rank (RR) measure. RR consid-
ers the position of the first true positive in the search results [24] and is
calculated using the following formula:

1

= -~ @)
rank of the 1st TP

For the second part of the study, we used BM25 [24] to evaluate the
ability of our approach to rank documents that do not contain an ex-
plicit mentioning of the CVE ID in neither their metadata nor screencast
content.

5.2. Case study results

RQ. How accurate are the bi-directional links, between known
vulnerabilities and screencasts published on YouTube, provided by
our knowledge model?

In what follows, we evaluate the linking accuracy of our approach,
by comparing it with our baseline (our initial labeled video dataset) of
48 vulnerability-screencast pairs. The objective of this section is to illus-
trate that our modeling approach is indeed capable of inferring hidden
and indirect links between video and other software repositories with
sufficient accuracy.

For our evaluation, we use precision and recall measures, with
true positives being the number of vulnerability-screencast pairs cor-
rectly matched, while false positives correspond to the number of
vulnerability-screencast pairs incorrectly matched. For recall, false neg-
atives correspond to the number of correct vulnerability-screencast pairs
that were not identified by our approach.

Evaluation of CVE ID Alignment: Fig. 9 shows the results of our
approach when using our 39 videos that explicitly mention a CVE ID in
their title, description or content. The results show that, our approach
achieves, as expected, high precision values of 1.0 and 0.96 when a
video explicitly mentions a CVE ID in its title or description. During
our analysis, we also observed that the text extracted from the image
frames explicitly mentioned several other CVE IDs (usually related to the
CVE-2017-5638 vulnerability) which resulted in a low precision of 0.30,
which also affects the precision of our approach when all information
sources are used together.

A manual inspection of the inferred links revealed that the lower re-
call (Fig. 9) for the individual information resources in a screencast is
due to inaccuracies found in the transcription, text of the image frames,
or the metadata of the screencasts. Also, depending on the accuracy of
the speech to text transcriptions, numbers mentioned within the CVE
ID in the speech part of a video are often erroneously transcribed into
another word(s), which no longer allow us to link these CVE IDs with

E.E. Eghan, P. Moslehi and J. Rilling et al.

0.25 o] [e]
0.20
0.15 A
o
o
o
0.10 A [e]
0.05
0.00 1 —_ —_ —_ e —_—
title desc qui speech all

Fig. 10. Reciprocal Rank results for BM25 Alignment evaluation.

their NVD counterparts. However, if all information resources are com-
bined, we were able to achieve a higher recall of 0.81. The evaluation
also highlights the impact of different information resources and their
trade-off on precision and recall. Using only available title and descrip-
tion information, our approach can achieve high precision, but recall
will be quite low. In contrast, by taking advantage of all available in-
formation resources, our linking approach will achieve a much higher
recall but also a significant lower precision, due to many false positives.

Evaluation of BM25 Relevance Alignment: As our previous eval-
uation showed, our approach can link in most cases successfully NVD
and Video content if a CVE ID is present. In this part of our evalua-
tion, we focus on the ability to rank documents that do not contain any
explicit mentioning of the CVE ID in either their metadata or the screen-
cast content with the description found for the vulnerability in the NVD
repository. As part of this evaluation process, we are interested in the
ranking of relevant (true positive) results in the top hits of the result
set. For the evaluation, we first manually searched and removed all in-
stances of CVE IDs found in the 48 videos of our video dataset and then
re-applied our linking approach on this data set. For the evaluation, we
compared the linking results, with the results from our initial (labeled)
video dataset. Fig. 10 shows that the median RR for our dataset without
any explicit mentioning of the CVE ID is 0.01, which means that our
top 10 results rarely contain any true positive. The main reason for the
poor performance of our approach is that the vulnerability related text
in the analyzed videos is too generic and inclusive, to allow for a rele-
vant matching between the video content and a specific CVE ID (and its
description).

To further improve the ranking results of our approach, we nar-
rowed the vulnerability search space by taking advantage of available
semantic information such as affected projects and vulnerability cate-
gory keywords found in the video text. We used DBPedia Spotlight,?® a
tool which automatically annotates mentions of DBPedia®’ resources in
a given text, to identify any reference to a software product (which are
represented as entities of DBpedia’s Software class) in our video and vul-
nerability datasets. DBpedia is a linked-data knowledge base that pro-
vides a rich source of RDF descriptions of million entities such as compa-
nies and products. Using this approach, we can reduce our vulnerability
search space (from 74,402 to 73 vulnerabilities), by including only those
vulnerabilities which were annotated with the same software products
shown in the videos of our dataset. As the RR results in Fig. 11(a) show,
our semantic alignment process shows a significant improvement for RR
values when all our information sources are used on the reduced number
of vulnerabilities. Using only the text from the image frames (i.e., gui

28 https://www.dbpedia-spotlight.org/.
29 https://wiki.dbpedia.org.

Information and Software Technology 117 (2020) 106197

text) resulted in the highest RR value of 0.16. This can be interpreted as
follows: 100% of the time, the first true positive (matched vulnerabil-
ity) was ranked in the 6th position in the result set. The average median
RR value over all boxplots increased from 0.01 to 0.11, representing a
9th position rank for the first true positive, 50% of the time. A further
manual analysis of the results showed that 3 videos are ranked in the 1st
position when we used only video descriptions, and 1 video is ranked
in the 1st position when we used either the video titles only or all the
combined information sources as our query terms during the alignment.

We further reduced the vulnerability search space (from 73 to 14
vulnerabilities) by performing a hierarchical search, first by comparing
video text with vulnerability category (CWE) descriptions and then com-
paring videos with vulnerabilities within the top 10 ranked category
results. Using this hierarchical search approach, we now only include
vulnerabilities of the same category. Fig. 11(b) shows the RR results af-
ter applying this filtering by “product and CWE category”. The average
median RR value of all the boxplots improved to 0.27, indicating that
the 1st true positive is now ranked 50% of the time at the 4th position
in the results set. Also, the highest median RR value increased to 0.5,
indicating that the 1st true positive is now 100% of the time ranked in
the 2nd position text when only text from image frames (i.e., gui text)
are used. However, we did not see any significant improvements in the
number of true positives ranked in the first position (p-value=0.81).
These initial results look promising and provide avenues for future en-
hancements to our approach.

A key finding from our assessment is that when a CVE ID is not ex-
plicitly mentioned, text from video image frames is the most informative
(relevant) resource to be used for linking videos to vulnerabilities.

We also believe that similar to how traceability links are generated
between unannotated commits and issues, techniques such as comparing
video and vulnerability publication dates and identifying the presence of
the vulnerable source code elements (class or method names) within the
content of videos can be used to improve the accuracy of our proposed
approach. Also, creators of vulnerability related videos should follow
more rigorously existing screencast best practices (e.g., [7]) and pro-
vide more precise and concise vulnerability information in their videos
to allow for easier integration (linking) of video content with other soft-
ware artifacts. For example, CVE IDs, name of the affected project being
demonstrated, and keywords from the vulnerability classification should
be explicitly included in the video.

Another finding from our case study is that both short and concise
information sources such as video titles and description, and verbose
sources such as video speech and text displayed in image frames are
important for our linking approach. For example, Fig. 11(a) and 11(b)
above show that the results obtained by using only text extracted from
image frames as queries are ranked higher than the other information
sources on average, probably because they contain more content than
the short descriptions/titles.

5.3. Discussion

As our evaluation shows, although videos and NVD contain differ-
ent types of information describing known vulnerabilities, similarities
and semantics captured by these artifacts can be used to allow for the
linking of software knowledge resources (NVD) with video content de-
scribing such vulnerabilities. As the case study further illustrates, our
modeling approach can indeed allow for the integration of these hetero-
geneous knowledge resources by transforming these traditional infor-
mation silos into information hubs, where knowledge can be seamlessly
shared and reused across resource borders. In addition, our ontology-
based knowledge model provides a machine-human readable represen-
tation that supports incremental knowledge population based on the
Open World Assumption.

Furthermore, our previously established bi-directional traceability
links from Maven Central to NVD security vulnerabilities [4,22] enable
us to infer indirect traceability links between screencasts and Maven

https://www.dbpedia-spotlight.org/
https://wiki.dbpedia.org

E.E. Eghan, P. Moslehi and J. Rilling et al.

0.8
0.6
0.4 4

0.2
o

0.01 —

title desc qui speech all
(a) RR results after “product” filtering of search
space

Information and Software Technology 117 (2020) 106197

0.8
0.6

0.4

T T
G 5

title desc qui speech all

(b) RR results after “product and CWE category”
filtering of search space

Fig. 11. Reciprocal Rank results after narrowing the vulnerability search space.

Table 3
Examples of vulnerabilities and their associated YouTube videos.

Vulnerability Related Video

Vulnerable Projects # (Maven Central) Dependencies on Vulnerable Project

CVE-2017-5638 https://youtu.be/od92kROMnC4

Apache Struts 2.3.16.3 5927
Apache Struts 2.3.16.1 5340
Apache Struts 2.3.8 1173
Apache Struts 2.3.16 585

project dependencies. The Maven repository includes many vulnerable
projects/components that are commonly reused within existing projects
in the Maven ecosystem. More specifically, while a project might not
have any direct vulnerability reported in the NVD database, it can still
be potentially affected indirectly through its dependency on other (ex-
ternal) vulnerable libraries and components. Providing traceability links
between screencasts describing vulnerabilities found in projects (or their
direct/indirect dependent components) can provide developers with ad-
ditional insights in the potential threats their project is exposed to and
help them to mitigate the security issues.

To illustrate how our knowledge model can be used to infer new
knowledge, we revisit our motivating example (scenario #1) from
Section 2, where Bob is following the instructions shown in a screen-
cast implementing his project without being aware that the component
which is explained in the screencast is using (dependent) a vulnerable
third-party API. Given our knowledge model, we are now able to first
identify vulnerable APIs or components Bob’s project might directly or
indirectly depend on and then recommend him a screencast that illus-
trates these known vulnerabilities. For example, Table 3 shows the four
most commonly used Apache Struts releases affected by the vulnera-
bility CVE-2017-5638 and the number of projects dependent on them,
based on Listing 4 (Section 4.3.1). As shown in the table, 5927 Maven
Central projects declare a dependency on Apache Struts 2.3.16.3. Any
project that uses, either directly or indirectly, one of these Apache Struts
releases could benefit from the YouTube video listed in the table. The
video not only illustrates how the vulnerability CVE-2017-5638 can be
exploited but also shows how to mitigate it.

It should be noted that the accuracy of these indirect links is depen-
dent on the accuracy of the SBSON-SEVONT alignment (provided by our
previous SV-AF approach [4]) and the SEVONT-VIDONT alignment in-
troduced in this paper. In our previous work, we reported a precision of
0.87 and a recall of 0.64 for linking our SBSON-SEVONT ontologies.

6. Threats to validity

Our research is introducing a methodology for integrating relevant
content from screencast tutorials, which are created by the crowd, with

other software security knowledge resources. However, some threats to
validity exist that might affect our reported results and the applicability
of our approach.

Construct Validity: We identify three threats that relate to the tools
and mechanisms used to obtain our results. The first threat is that our
case study relies on our ability to mine facts from both YouTube and
the NVD repository to populate our ontologies. A common problem
when mining software repositories is that these repositories often con-
tain noise in their data, due to data ambiguity, inconsistencies, or in-
completeness. Although studies (e.g., [25]) have shown the presence of
incorrect NVD information, this threat is partly mitigated since vulnera-
bilities published in NVD are curated by security experts. Similarly, the
Maven tool ensures that defined project dependencies are fully specified
and available in the Maven Central repository, limiting not only ambi-
guities and inconsistencies at the project build but also at the complete
dataset level.

Regarding the knowledge extracted from YouTube, not all vulnera-
bility related videos explicitly mention a vulnerability CVE in their title,
description, or content (i.e., image frames text or speech). As our case
study has shown, this can significantly reduce the accuracy of our ap-
proach to automatically link such videos to the related vulnerabilities.
To address this potential limitation, we use the BM25 information re-
trieval approach [23] to identify NVD vulnerabilities that are most sim-
ilar to a given video to further improve our alignment between these
two resources, since BM25 performs well on shorter textual descriptions.
While we are not able to mitigate this threat completely, different ap-
proaches and techniques (such as reducing the search space) can be used
to improve the linking results.

Another potential threat is the automatic transcription of videos, a
process that is prone to errors and potentially can cause CVE IDs not be-
ing correctly transcribed. Using a specialized gazetteer list (e.g., Word-
Net [26]) to detect and correct erroneously transcribed CVE IDs can be
considered as future work to improve the accuracy of our approach in
terms of identifying these CVE IDs.

The final threat to construct validity is related to the extraction of
project dependency information. The work in this paper does not con-
sider dependency scopes, configurations, and exclusions during project

https://youtu.be/od92kR0MnC4

E.E. Eghan, P. Moslehi and J. Rilling et al.

dependency resolution; this can introduce false positives when identi-
fying potentially vulnerable projects based on transitive project depen-
dencies. For future work, we plan to extend our dependency analysis to
cover such cases.

Internal validity: One internal threat that potentially can affect our
results is the quality of the established links from vulnerabilities to
release builds which we used to answer our RQ. SV-AF approach es-
tablishes these traceability links with a precision of 0.87 and a recall
of 0.64. In addition, we compared SV-AF against a publicly available
[27] and a proprietary tool®? (now open source) [28]; SV-AF’s accuracy
compared favorably against the free tool and just below the proprietary
tool.

External validity: In terms of external threats to validity, a potential
threat is that the presented experiments are not generalizable to non-
YouTube videos and non-NVD vulnerabilities. This threat can be mit-
igated by our modeling approach with its different abstraction layers.
Our domain-specific ontologies (e.g., SEVONT and VIDONT) contain the
core shared concepts and relations common to that particular domain.
These domain ontologies can be extended and instantiated to include
system level ontologies that support new vulnerability and video repos-
itories. Also, our dataset can be considered incomplete, covering only a
limited number of existing videos and vulnerabilities, limiting the gen-
eralizability of our results. To mitigate this problem, we plan to extend
the datasets as part of our future work to include a larger number of
videos and vulnerabilities in our analysis.

7. Related work

Given the diversity in software development processes and their dis-
tributed nature, there is a need for knowledge integration and sharing
among software artifacts, to improve knowledge reuse and allow for
new types of analyses across resource boundaries. Several semantic-
web based approaches have been proposed that use ontologies to es-
tablish taxonomies in the software engineering domain (e.g., [29,30]).
These ontologies describe and capture domain knowledge of develop-
ers, source code, and other software artifacts. Also, other approaches
have been proposed to address the issue of seamless integration of these
knowledge resources [5,31]. While all these approaches aim to promote
the inference and integration of new knowledge in an existing knowl-
edge base, they have not considered crowd-based (multimedia) docu-
ments as part of their solution space.

Crowd-based documents have become an increasingly popular ref-
erence for learning software development/maintenance related skills.
This has motivated researchers to embark on research in different ar-
eas of extracting information from crowd-based documents and linking
these documents to their associated artifacts [32-34]. More specifically,
recent work has focused on analyzing tutorial screencasts [1,7,8,10,35-
39], since screencasts contain tacit knowledge shared by developers and
are being frequently produced and used for learning purposes [7].

In what follows, we discuss the work the closest related to ours, on
vulnerability dependency analysis, semantic-web enabled software anal-
ysis research, as well as mining and linking of crowd-based documents
and screencasts.

7.1. Vulnerability analysis in software dependencies

Several static vulnerability analysis and detection approaches (tools)
exist (e.g. [28,40-43]) that identify vulnerability dependencies in the
source code. Common to these approaches is that they identify and track
security vulnerabilities and their dependencies at the project level. In
contrast, our approach also includes a global dependency analysis of vul-
nerabilities across project boundaries. Our approach therefore not only

30 The tool in [28] was proprietary at the time the evaluation was performed
in our previous work.

Information and Software Technology 117 (2020) 106197

allows us to integrate different information resources as part of the anal-
ysis, but also provides us with the ability to take advantage of semantic
reasoning services to infer implicit facts about the vulnerable code us-
ages within the system, to support bi-directional dependency analysis —
including both impacts to external dependencies and vice versa.

Among the existing research most closely related to ours are Cadariu
et al. [44], Plate et al. [28], Ponta et al. [45], Decan et al. [46], and
Pashchenko et al. [47]. Cadariu et al. [44] introduce in their Vulnerabil-
ity Alert Service (VAS) an approach that notifies users if a vulnerability is
reported for software systems. VAS depends on the OWASP Dependency-
Check tool [27]. Plate et al. [28] proposed a technique that supports
the impact analysis of vulnerability based on the dynamic analysis of
code changes introduced by security fixes. Their work was extended by
Ponta et al. [45] to include static analysis of code changes and provide
a novel combination of static and dynamic analysis. Among the other
related work, Decan et al. [46] perform an empirical study of the evolu-
tion of vulnerabilities within the npm ecosystem and Pashchenko et al.
[47] propose an approach for the reliable measurement of vulnerable
dependencies in OSS libraries.

Several studies have shown that projects are becoming increasingly
susceptible to security vulnerabilities due to the rate at which software
libraries are reused within projects. Alqahtani et al. [48] show 750
Maven projects (0.062% of all Maven projects) contain known security
vulnerabilities that have been reported in the NVD database. A study by
Kula et al. [49] on 4600 GitHub projects showed that 81.5% of them do
not update their direct dependencies on vulnerable libraries. A similar
study by Eghan et al. [50] on the dependencies of four popular vulner-
able projects showed that 36.7% of these projects’ dependents updated
their dependency to more vulnerable versions. Our approach of provid-
ing traceability links between vulnerabilities, project dependencies, and
online screencasts addresses the lack of awareness about security vul-
nerabilities.

7.2. Semantic-Web enabled software analysis

Hyland-Wood et al. [51] proposed an OWL ontology of software
engineering concepts, including classes, tests, metrics, and require-
ments. Bertoa et al. [52] focused on software measurement. Witte et al.
[18] used text mining and static code analysis to map documentation
to source code in RDF for software maintenance purposes. Yu et al.
[29] also model static source code information using an ontology and
take advantage of SWRL rules to infer common bugs in the source code.
Happel et al. [30] proposed KOntoR, which conceptualizes knowledge
about software artifacts, such as the programming language used or
licensing models. Dietrich et al. [53] developed a tool that scans the
abstract syntax tree of Java programs and detects design patterns, de-
scribed in terms of OWL ontologies, for documentation purposes.

Several researchers (e.g., [31,54]) have modeled software evolu-
tion knowledge found in software repositories as ontologies. Their ap-
proaches integrate different artifacts to facilitate common repository
mining activities. Tappolet [55] presents a roadmap towards integrat-
ing semantics of different software project repositories in three main
steps: 1) data representation using RDF/OWL ontologies, 2) intra-project
repository integration, and finally 3) inter-project repository integra-
tion. Based on these ideas, Kiefer et al. [54] presented EvoOnt, which
introduces and integrates the source code, bug and versioning system
ontologies. EvoOnt also takes advantage of Semantic Web reasoning ser-
vices to detect bad code smells, calculate metrics, and to extract data
for visualizing changes in code over time. Igbal et al. [56] presented
their Linked Data Driven Software Development (LD2SD) methodology
to provide a uniform and centralized RDF-based access to JIRA bug
trackers, Subversion, developer blogs, project mailing lists. Wursch et al.
[5] presented SEON, a family of ontologies that describe many differ-
ent facets of a software’s life-cycle. SEON is unique in that it comprises
multiple abstraction layers. Our core ontologies build upon the SEON
knowledge model, which we further extend to support additional soft-

E.E. Eghan, P. Moslehi and J. Rilling et al.

ware artifacts (e.g., build systems ontology, Video ontology, vulnerabil-
ity ontologies) and additional reasoning.

Given that these approaches are all based on RDF as a standardized
knowledge representation format, we can envision interesting interac-
tions between our knowledge models and the ontologies presented by
the other authors. Such extensions could lead to a completely new fam-
ily of software analysis services or at least simplify the implementation
of existing ones.

7.3. Linking crowd-based documents

Jiau and Yang [32], proposed an approach that recovers traceability
links between API classes and question and answers on StackOverflow
to improve document coverage. Their goal is to reduce the inequality
of crowdsourced API documents in StackOverflow since a larger pro-
portion of existing discussions and “question and answers” address a
smaller portion of topics. Barzilay et al. in [33], developed Example
Overflow, which is a code search tool on top of StackOverflow to ex-
tract high-quality code examples. As part of their empirical analysis,
they studied the type of questions posted on StackOverflow and to what
extent these questions could be answered by their approach. Subrama-
nian et al. [34] proposed a method for linking code examples on Stack-
Overflow to API documentation. Based on the proposed method, they
implemented a tool, Baker, that links code snippets to Java classes and
methods or JavaScript functions, with an observed precision of 97%.
Bao et al. [35, 36] proposed a method of tracking user activities and de-
veloped a tool, ActivitySpace, to support inter-application information
needs of software developers. The tool reduces the efforts of developers
while locating documents and recalling their history activities in daily
work. In contrast to this existing research, our work focuses on analyzing
multimedia crowd-based documentation [1].

7.4. Analyzing software engineering screencasts

The first study in the area of using crowd-based screencasts to share
and document developer knowledge was conducted by MacLeod et al.
[7]. They investigated the goals and techniques of developers in creating
screencasts and the benefits and challenges of this type of knowledge
sharing. As part of their work, they analyzed 20 tutorial screencasts
and interviewed 10 developers/YouTubers. They found that by creat-
ing screencasts, developers demonstrate and share how to customize a
program, the challenges they encountered and their development expe-
riences, solutions to problems, how to apply design patterns, and their
programming language knowledge. They also observed that develop-
ers are creating these screencasts to promote themselves and gain rep-
utation by helping others. An extension of this study [39] compared
how Ruby on Rails screencasts are hosted and shared on YouTube (a
free platform) to how they are shared on a formal screencast site like
RailsCasts,*! which is a paid platform. Finally, they extracted guidelines
for screencast creators to produce clear and understandable screencasts.

In earlier work [10], we used the speech component of screencasts to
provide relevant information to various software engineering tasks. For
example, by leveraging information extraction techniques (e.g., LDA)
on the spoken text, we were able to extract steps of use-case scenar-
ios from the videos. In an extension of the previous work, we proposed
a feature location approach [1] that links software application features
demonstrated in how-to-tutorials to their corresponding source code im-
plementation.

Ponzanelli et al. [8,37] developed an approach to extract relevant
fragments of software development tutorial videos and link them to rel-
evant StackOverflow discussions by mining the (captioned) speech and
GUI content of the video tutorials. In line with the aforementioned works
on software development tutorial videos, Yadid et al. [38] developed an

31 http://railscasts.com.

Information and Software Technology 117 (2020) 106197

approach to extract code from programming video tutorials to enable
deep indexing of them. They attempted to consolidate code across mul-
tiple image frames of the videos and used statistical language models to
make corrections on the extracted code.

8. Conclusion and future work

Developers often resort to a variety of knowledge resources, includ-
ing informal resources such as screencasts and video tutorials when com-
prehending and analyzing software systems. Though many screencasts
and video tutorials exist, these resources are rarely integrated with other
software-related knowledge resources. The objective of our research is to
provide a standardized ontological representation that allows for seam-
less knowledge integration at different abstraction levels across knowl-
edge resource boundaries. Having this knowledge integration not only
provides developers with direct access to vulnerability information de-
scribed in a screencast content, but also allows us to link vulnerability
descriptions to relevant screencasts and dependency information. In ad-
dition, our approach also allows developers to identify screencasts that
demonstrate such attacks and provides developers who are indirectly
using vulnerable libraries in their project (e.g., through Maven depen-
dencies) with insights on how to reduce the potential impact of being
directly or indirectly exposed to a vulnerability.

We evaluate the flexibility and applicability of our approach to 1)
provide bi-directional links between known vulnerabilities and screen-
casts published on YouTube, and 2) link relevant NVD entries, screen-
casts, and build dependencies to provide developers and maintainers
with valuable insights during vulnerability management and impact
(ripple effect) analysis. We performed a case study on 48 videos that
describe the exploits of known vulnerabilities and how these vulnera-
bilities can be fixed. Our evaluation shows our approach can successfully
link relevant vulnerabilities and screencasts with an average precision
of 98% and an average recall of 54% when vulnerability identifiers (CVE
ID) are explicitly mentioned in the videos. When no direct reference to
a CVE ID exists in the screencast, our approach was still able to link
video-vulnerability descriptions, with up to 100% of the time relevant
links being ranked in the 2nd position of our results set.

As part of our future work, we plan to make the filtering process
(introduced in the case study) to reduce the search space an integrated
part of our linking approach by extending our current knowledge model
to include a CWE ontology and link to DBpedia. Having such a unified
knowledge representation, will allow us to infer additional knowledge
and further restrict our search space during the linking process of videos
which do not contain a CVE ID. We also plan to conduct another em-
pirical study to improve the generalizability of our approach by cover-
ing different vulnerability and video repositories. In addition, having a
larger dataset would also allow us to classify vulnerability related videos
based on their popularity and content. We also consider extending our
modeling approach to integrate videos and their content with other soft-
ware artifacts such as blogs and Q/A forums (e.g., StackOverflow) to
derive new application scenarios for our modeling approach.

Declaration of Competing Interest

None.
References

[1] P.Moslehi, B. Adams, J. Rilling, Feature Location using Crowd-based Screencasts, in:
Proceedings of the 15th IEEE Working Conference on Mining Software Repositories
(MSR), 2018.

[2] P.T. Devanbu, S. Stubblebine, Software engineering for security: a roadmap, in:
Proceedings of the Conference on the Future of Software Engineering, 2000,
pp. 227-239.

[3] A.E. Hassan, The road ahead for Mining Software Repositories, in: 2008 Frontiers of
Software Maintenance, 2008, pp. 48-57.

[4] S.S. Algahtani, E.E. Eghan, J. Rilling, SV-AF - A Security Vulnerability Analysis
Framework, in: [EEE 27th International Symposium on Software Reliability Engi-
neering (ISSRE), 2016, pp. 219-229.

http://railscasts.com
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0004

E.E. Eghan, P. Moslehi and J. Rilling et al.

[5]
[6]

[7]

[8]
[9]

[10]

[11]

[12]
[13]

[14]
[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

M. Wiirsch, G. Ghezzi, M. Hert, G. Reif, H.C. Gall, SEON: a pyramid of ontologies for
software evolution and its applications, Computing 94 (11) (Nov. 2012) 857-885.
I. Duncan, L. Yarwood-Ross, C. Haigh, YouTube as a source of clinical skills educa-
tion, Nurse Educ. Today 33 (12 (December)) (2013) 1576-1580.

L. MacLeod, M.-A. Storey, A. Bergen, Code, Camera, Action: How Software Develop-
ers Document and Share Program Knowledge Using YouTube, 2015 IEEE 23rd Int.
Conf. Progr. Compr., 2015.

L. Ponzanelli, et al., Too long; didn’t watch!, in: Proceedings of the 38th International
Conference on Software Engineering - ICSE ’16, 2016, pp. 261-272.

P.K. Manadhata, J.M. Wing, An attack surface metric, IEEE Trans. Softw. Eng. 37
(3) (2011) 371-386.

P. Moslehi, B. Adams, J. Rilling, On mining crowd-based speech documentation,
in: Proceedings - 13th Working Conference on Mining Software Repositories, MSR
2016, 2016.

J. Williams, A. Dabirsiaghi, The unfortunate reality of insecure libraries, Asp. Secur.
Inc (2012) 1-26.

1. Sonatype, Maven: The Definitive Guide, O’Reilly, 2008.

T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Sci. Am. 284 (5 (May))
(2001) 34-43.

D.L. McGuinness, F. Van Harmelen, Owl web ontology language overview, W3C
Recomm. 10.2004-03 2004 (February) (2004) 1-12.

C.J.H. Mann, The Description Logic Handbook — Theory, Implementation and Ap-
plications, Kybernetes 32 (9/10) (2003) 2003.06732iae.006, Dec.

B. DuCharme, Learning SPARQL, 2n Edition, O’Reilly Media, 2011.

B. Henderson-Sellers, Bridging metamodels and ontologies in software engineering,
J. Syst. Softw. 84 (2 (February)) (2011) 301-313.

R. Witte, Y. Zhang, J. Rilling, Empowering software maintainers with semantic web
technologies, in: Eur. Conf. Semant. Web Res. Appl., 2007, pp. 37-52.

C. Atkinson, M. Gutheil, K. Kiko, On the relationship of ontologies and models, in:
Proc. 2nd Work. MetaModelling Ontol. WoMMO06 LNI P96 Gesellschaft fur Inform.
Bonn, 2006, pp. 47-60.

A. Kimmig, S. Bach, M. Broecheler, B. Huang, L. Getoor, A short introduction to
probabilistic soft logic, in: Proceedings of the NIPS Workshop on Probabilistic Pro-
gramming: Foundations and Applications, 2012, pp. 1-4.

M. Cheriet, N. Kharma, C. Liu, C. Suen, Character Recognition Systems: A Guide For
Students and Practitioners, Wiley-Interscience, 2007.

S.S. Alqahtani, E.E. Eghan, J. Rilling, Recovering Semantic Traceability Links be-
tween APIs and Security Vulnerabilities: An Ontological Modeling Approach, in:
Proceedings - 10th IEEE International Conference on Software Testing, Verification
and Validation, ICST 2017, 2017, pp. 80-91.

C.D. Manning, P. Raghavan, H. Schiitze, An Introduction to Information Retrieval,
Cambridge University Press, 2009.

1. Keivanloo, Source Code Similarity and Clone Search, Concordia University, 2013.
V.H. Nguyen, F. Massacci, The (un)reliability of NVD vulnerable versions data, in:
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and com-
munications security - ASIA CCS ’13, 2013, pp. 493-498.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing by
latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (6) (1990) 391-407.

J. Long, S. Springett, and W. Stranathan, “OWASP Dependency Check,” 2015. [On-
line]. Available: https://www.owasp.org/index.php/OWASP_Dependency_Check.
[Accessed: 30-Dec-2018].

H. Plate, S.E. Ponta, A. Sabetta, Impact assessment for vulnerabilities in open-source
software libraries, in: 2015 IEEE 31st Int. Conf. Softw. Maint. Evol. ICSME 2015 -
Proc., 2015, pp. 411-420.

L. Yu, J. Zhou, Y. Yi, P. Li, Q. Wang, Ontology model-based static analysis on java
programs, in: 2008 32nd Annual IEEE International Computer Software and Appli-
cations Conference, 2008, pp. 92-99.

H.-J. Happel, A. Korthaus, S. Seedorf, P. Tomczyk, KOntoR: an ontology-enabled
approach to software reuse, in: Proc. Of The 18Th Int. Conf. On Software Engineering
And Knowledge Engineering, 2006.

J. Tappolet, C. Kiefer, A. Bernstein, Semantic web enabled software analysis, Web
Semant. Sci. Serv. Agents World Wide Web 8 (2-3 (July)) (2010) 225-240.

H.C. Jiau, F.-P. Yang, Facing up to the inequality of crowdsourced API documenta-
tion, ACM SIGSOFT Softw. Eng. Notes 37 (1 (January)) (2012) 1.

O. Barzilay, C. Treude, A. Zagalsky, Facilitating Crowd Sourced Software Engineer-
ing via Stack Overflow, in: Finding Source Code on the Web for ..., New York,
Springer New York, 2013, pp. 1-19.

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Information and Software Technology 117 (2020) 106197

S. Subramanian, L. Inozemtseva, R. Holmes, Live API documentation, in: Proceedings
of the 36th International Conference on Software Engineering - ICSE 2014, 2014,
pp. 643-652.

L. Bao, Z. Xing, X. Wang, B. Zhou, Tracking and analyzing cross-cutting activities in
developers’ daily work, in: 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2015), 2015, pp. 277-282.

L. Bao, J. Li, Z. Xing, X. Wang, X. Xia, B. Zhou, Extracting and analyzing time-series
HCI data from screen-captured task videos, Empir. Softw. Eng. 22 (1) (Feb. 2017)
134-174.

L. Ponzanelli, et al., Automatic Identification and Classification of Software Devel-
opment Video Tutorial Fragments, IEEE Trans. Softw. Eng. (2017) 1.

S. Yadid, E. Yahav, Extracting code from programming tutorial videos, in: Proceed-
ings of the 2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software - Onward! 2016, 2016, pp. 98-
111.

L. MacLeod, A. Bergen, M.-A. Storey, Documenting and sharing software knowledge
using screencasts, Empir. Softw. Eng. 22 (3 (June)) (2017) 1478-1507.

M. Hirzel, D. Von Dincklage, A. Diwan, M. Hind, Fast online pointer analysis, ACM
Trans. Program. Lang. Syst. 29 (2 (April)) (2007) 11-66.

S. Mancoridis, B.S. Mitchell, Y. Chen, E.R. Gansner, Bunch: A clustering tool for the
recovery and maintenance of software system structures, in: Software Maintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference on, 1999, pp. 50-59.
J.-D. Choi, M. Burke, P. Carini, Efficient flow-sensitive interprocedural computa-
tion of pointer-induced aliases and side effects, in: Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages - POPL '93,
1993, pp. 232-245.

N. Rutar, C.B. Almazan, J.S. Foster, A Comparison of Bug Finding Tools for
Java, in: 15th International Symposium on Software Reliability Engineering, 2004,
pp. 245-256.

M. Cadariu, E. Bouwers, J. Visser, A. Van Deursen, Tracking known security vulner-
abilities in proprietary software systems, in: 2015 IEEE 22nd Int. Conf. Softw. Anal.
Evol. Reengineering, SANER 2015 - Proc., 2015, pp. 516-519.

S.E. Ponta, H. Plate, A. Sabetta, Beyond metadata: code-centric and usage-based
analysis of known vulnerabilities in open-source software, in: 2018 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME), 2018,
pp. 449-460.

A. Decan, T. Mens, E. Constantinou, On the impact of security vulnerabilities
in the npm package dependency network, in: Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories - MSR ’18, 2018, pp. 181-
191.

1. Pashchenko, H. Plate, S.E. Ponta, A. Sabetta, F. Massacci, Vulnerable open source
dependencies, in: Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement - ESEM ’18, 2018, pp. 1-10.

S.S. Algahtani, E.E. Eghan, J. Rilling, Tracing known security vulnerabilities in soft-
ware repositories - a semantic web enabled modeling approach, Sci. Comput. Pro-
gram. 121 (Feb. 2016) 153-175.

R.G. Kula, D.M. German, A. Ouni, T. Ishio, K. Inoue, Do developers update
their library dependencies? Empir. Softw. Eng. 23 (1 (February)) (2018) 384-
417.

E.E. Eghan, S.S. Alqahtani, C. Forbes, J. Rilling, API trustworthiness: an ontological
approach for software library adoption, Softw. Qual. J. (2019) 1-46.

D. Hyland-Wood, D. Carrington, S. Kaplan, Toward a Software Maintenance Method-
ology using Semantic Web Techniques, in: 2006 Second International IEEE Work-
shop on Software Evolvability (SE’06), 2006, pp. 23-30.

M.F. Bertoa, A. Vallecillo, F. Garcia, An Ontology for Software Measurement, in:
Ontologies for Software Engineering and Software Technology, Berlin Heidelberg,
Springer, 2006, pp. 175-196.

J. Dietrich, C. Elgar, A Formal Description of Design Patterns Using OWL, in: Aus-
tralian Software Engineering Conference, 2005, pp. 243-250.

C. Kiefer, A. Bernstein, J. Tappolet, Mining Software Repositories with iSPAROL and
a Software Evolution Ontology, Fourth International Workshop on Mining Software
Repositories (MSR’07:ICSE Workshops 2007), 2007 10-10.

J. Tappolet, Semantics-aware software project repositories, in: Proceedings of the
European Semantic Web Conference, 8, Ph.D. Symposium, 2008, p. 8.

A. Igbal, G. Tummarello, M. Hausenblas, O.-E. Ureche, LD2SD: linked data driven
software development, International Conference on Software Engineering & Knowl-
edge Engineering, 2009.

http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
https://www.owasp.org/index.php/OWASP_Dependency_Check
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055

	The missing link - A semantic web based approach for integrating screencasts with security advisories
	1 Introduction
	2 Problem statement
	2.1 Motivating examples
	2.2 Research objective

	3 Background
	3.1 Crowd-based multimedia documentation
	3.2 Security vulnerabilities
	3.3 Dependency management - Maven
	3.4 Ontologies and semantic web
	3.5 SV-AF: security vulnerability analysis framework

	4 Methodology
	4.1 Overview
	4.2 Fact extraction process
	4.2.1 Fact extraction from video artifacts
	4.2.2 Fact extraction from vulnerability artifacts
	4.2.3 Fact extraction from Maven artifacts

	4.3 Knowledge modeling - extending SV-AF with knowledge from screencast repositories
	4.3.1 Ontology alignment and knowledge inferencing

	5 Case study: CVE-2017-5638
	5.1 Case study setup
	5.1.1 Dataset
	5.1.2 Applying our methodology
	5.1.3 Evaluation measures

	5.2 Case study results
	5.3 Discussion

	6 Threats to validity
	7 Related work
	7.1 Vulnerability analysis in software dependencies
	7.2 Semantic-Web enabled software analysis
	7.3 Linking crowd-based documents
	7.4 Analyzing software engineering screencasts

	8 Conclusion and future work
	Declaration of Competing Interest
	References

