
Information and Software Technology 117 (2020) 106197

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The missing link – A semantic web based approach for integrating

screencasts with security advisories

Ellis E. Eghan

a , ∗ , Parisa Moslehi a , Juergen Rilling

a , Bram Adams b

a Concordia University, Montreal, Canada
b Polytechnique Montreal, Montreal, Canada

a r t i c l e i n f o

Keywords:

Crowd-based documentation

Mining video content

Software security vulnerabilities

Software dependencies

Software traceability

Semantic knowledge modeling

Semantic web

a b s t r a c t

Context: Collaborative tools and repositories have been introduced to facilitate open source software develop-

ment, allowing projects, developers, and users to share their knowledge and expertise through formal and informal

channels such as repositories, Q&A websites, blogs and screencasts. While significant progress has been made in

mining and cross-linking traditional software repositories, limited work exists in making multimedia content in

the form of screencasts or audio recordings an integrated part of software engineering processes.

Objective: The objective of this research is to provide a standardized ontological representation that allows for

a seamless knowledge integration of screencasts with other software artifacts across knowledge resource bound-

aries.

Method: In this paper, we propose a modeling approach that takes advantage of the Semantic Web and its

inference services to capture and establish traceability links between knowledge extracted from different resources

such as vulnerability information in NVD, project dependency information from Maven Central, and YouTube

screencasts.

Results: We performed a case study on 48 videos that illustrate attacks on vulnerable systems and show that

our approach can successfully link relevant vulnerabilities and screencasts with an average precision of 98%

and an average recall of 54% when vulnerability identifiers (CVE ID) are explicitly mentioned in the metadata

(title and description) of videos. When no CVE ID is present, our initial results show that for a reduced search

space (for one vulnerability), using only the textual content of the image frames, our approach is still able to link

video-vulnerability pairs and rank the correct result within the top two positions of the result set.

Conclusion: Our approach not only establishes bi-directional, direct, and indirect traceability links from screen-

casts to these other software artifacts; these links can also be used to guide practitioners in comprehending the

potential security impact of vulnerable components in their projects.

1

c

i

v

a

i
S

r

i

b

i

m

e

a

r

s

u

s

w

b

h

R

A

0

. Introduction

Sharing knowledge and information through the Internet has
hanged the software industry, with open source development becom-
ng a significant part of this industry. In open source software, the de-
elopment process extends beyond organizational and project bound-
ries, with software artifacts (e.g., source code and documentation) be-
ng crowd-sourced and shared through public portals (e.g., GitHub, 1

ourceForge, 2 and Maven Central 3). Collaborative tools and software
epositories (e.g., version control systems, mailing lists, and bug track-
ng systems) support not only the crowd-sourced development but also
∗ Corresponding author.

E-mail addresses: e_eghan@encs.concordia.ca (E.E. Eghan), p_mosleh@en

ram.adams@polymtl.ca (B. Adams).
1 https://github.com/ .
2 https://sourceforge.net/ .
3 https://search.maven.org/ .

ttps://doi.org/10.1016/j.infsof.2019.106197

eceived 5 March 2019; Received in revised form 26 September 2019; Accepted 30 S

vailable online 3 October 2019

950-5849/© 2019 Elsevier B.V. All rights reserved.
ts agile development processes that focus on informal, minimal docu-
entation of a system and its functionalities. As part of this collaborative

nvironment, developers and users often share their product knowledge
nd expertise through different types of media (i.e., software reposito-
ies, Q&A websites, blogs, and multimedia documentation) [1] .

One media type which has gained popularity in recent years are
creencasts. They are typically created by the crowd and used to doc-
ment different aspects of a system, such as: explaining how specific
ystem features work, document an observed bug in a system, provide a
orkaround for a known problem, or demonstrate security issues caused
y a known vulnerability. Screencasts deliver their content in the form of
cs.concordia.ca (P. Moslehi), juergen.rilling@concordia.ca (J. Rilling),

eptember 2019

https://doi.org/10.1016/j.infsof.2019.106197
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.106197&domain=pdf
mailto:e_eghan@encs.concordia.ca
mailto:p_mosleh@encs.concordia.ca
mailto:juergen.rilling@concordia.ca
mailto:bram.adams@polymtl.ca
https://github.com/
https://sourceforge.net/
https://search.maven.org/
https://doi.org/10.1016/j.infsof.2019.106197

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

a

(

c

Y

a

t

b

t

m

g

s

s

V

i

n

m

s

b

a

f

v

a

l

t

l

a

i

e

i

f

i

s

a

a

c

w

t

O

o

r

F

l

S

s

s

e

a

c

r

b

n

M

a

t

b

a

d

i

l

o

c

G

g

p

s

s

i

i

f

s

m

a

t

s

u

c

t

w

p

2

2

u

d

t

C

N

c

m

v

o

p

p

v

w

s

s
l
udio (through a narrator), video (image frames), and textual metadata
e.g., subtitles, title, description, publish date). For example, screen-
asts uploaded on crowd-based online video portals or repositories (e.g.,
ouTube 4 or Vimeo 5) are used to illustrate how an attacker can exploit
 known vulnerability in a system, or how a vulnerable API might in-
roduce security exploits in a client application. Screencasts not only
enefit from their ability to deliver dynamic content through images,
ext, and speech but also that they are mostly created by the crowd who
ake new content available as a product evolves, or certain features

ain popularity among the user base.
At the same time, Information Security (IS) has emerged as an es-

ential part of software engineering best practices [2] . Specialized advi-
ories or S ecurity V ulnerability D ata B ases (SVDBs), such as the National
ulnerability Database (NVD), 6 have been introduced in response to the

ncreasing number of known software vulnerabilities. Vulnerabilities are
o longer limited to individual projects or computers, but often affect
illions of computers and even complete software ecosystems. SVDBs

erve in this context as central repositories for tracking software vulnera-
ilities and potential solutions to resolve them. However, vulnerabilities
nd their exploits are only described in these repositories in a textual
ormat, lacking hands-on instructions on how to replicate or fix a known
ulnerability.

While these global repositories (e.g., video portals, security vulner-
bility databases) have been widely adopted by industry to support col-
aborative software development and knowledge sharing, they also in-
roduce new challenges. These repositories often remain information si-
os – a situation where a repository is typically not directly linked with
nother one [3] . For example, source code stored in versioning repos-
tories may contain vulnerabilities already reported in SVDBs. How-
ver, without having a link between the source code and vulnerabil-
ty databases, developers must manually search individual repositories
or relevant information or artifacts. A major challenge when establish-
ng traceability links among these repositories is the lack of a common,
tandardized semantics and knowledge representation that is applicable
cross repository boundaries.

The objective of our research is therefore twofold: 1.) We discuss how
 standardized knowledge representation with well-defined semantics
an address the integration and linking of these knowledge resources, as
ell as 2.) allow for the introduction of novel types of software analytics

hat take advantage of such a unified knowledge base.
In our prior work [4] , we introduced our SE curity V ulnerability

NT ology (SEVONT) and S oftware B uild S ystem On tology (SBSON)
ntologies to model the domain of SVDBs and project dependencies,
espectively. We also introduced a Security Vulnerabilities Analysis
ramework (SV-AF), which is a semantic modeling approach that estab-
ishes traceability links between the NVD security database (modeled by
EVONT), Maven dependency repository (modeled by SBSON), and the
ource code of projects (modeled by SEON [5]).

The research in this paper is a continuation of our previous work on
emantic modeling and tracing of software security vulnerabilities. We
xtend our existing knowledge base with a video ontology by integrating
udio, video (textual cues in image frames) and metadata from screen-
asts published on YouTube with software dependency and security-
elated knowledge from our existing SV-AF approach. We also establish
i-directional traceability links from screencasts to NVD security vul-
erabilities and infer indirect traceability links between screencasts and
aven project dependencies by taking advantage of our existing trace-

bility links (in SV-AF) between NVD and Maven Central. We argue that
hese links allow us to enrich existing vulnerability information that can
e further used to provide practitioners with a different type of vulner-
bility analysis services. We also discuss several usage scenarios, where
4 https://www.youtube.com/ .
5 https://vimeo.com/ .
6 https://nvd.nist.gov/ .

f

d

r

evelopers watching a screencast could be notified that an API shown
n a screencast contains known vulnerabilities or a screencast can be
inked to SVDBs to provide additional instructions on how to replicate
r fix a vulnerability.

It should be noted that the results which we are presenting are
urrently not generalizable for all types of videos and vulnerabilities.
iven the diversity of screencasts in terms of their content, length, lan-
uages/dialects being used and, image quality of the videos, our re-
orted results are not generalizable. Instead, this research presents re-
ults from a case study which we conducted as a proof of concept on a
et of screencasts related to software vulnerabilities. We illustrate that
t is indeed possible to link screencasts, which mention a vulnerability
dentifier in at least one of its information resources (meta data, image
rames, speech) to a vulnerability in a SVDB. We also show that once
uch direct references to vulnerability identifiers are removed, while
ore difficult and with lower precision, it is still possible to link vulner-

bilities with screencasts.
The main contributions of this work are as follows:

• We introduce our VID eo ONT ology (VIDONT) to capture the seman-
tics of crowd-based online video repositories (e.g., YouTube).

• We establish bi-directional traceability links between knowledge
within our SEVONT and VIDONT ontologies; indirect traceability
links are also inferred between VIDONT and SBSON.

• We evaluate the accuracy of these direct traceability links between
screencasts and vulnerability information in NVD.

• We perform a case study to illustrate the applicability and flexibility
of our modeling approach.

The remainder of this paper is organized as follows: Section 2 mo-
ivates our work. Section 3 summarizes background relevant to our re-
earch, followed by Section 4 , which introduces the methodology we
sed to create our integrated knowledge model. Section 5 discusses our
ase study design and findings. Section 6 provides a discussion of po-
ential threats to the validity of our approach. Section 7 compares our
ork with related work, followed by Section 8 , which concludes the
aper and discusses future work.

. Problem statement

.1. Motivating examples

The following two scenarios motivate our research on establishing a
nified representation for integrating screencasts with security advisory
atabases by establishing semantic traceability links between them. In
hese scenarios, we take advantage of repositories such as NVD, Maven
entral, and YouTube and illustrate the potential benefits of these links.
VD and Maven Central are widely adopted by the software engineering
ommunity to capture software vulnerability and project dependency
etadata. YouTube, on the other hand, is one of the most popular online

ideo sharing platforms to which 400 h of video, related to a vast variety
f subjects, are uploaded per minute [6] . Studies suggest that YouTube
rovides a crowd-based online platform that allows people who are ex-
erts in a domain to share their knowledge with novices [7] . Also, de-
elopers create screencasts as an alternative to blogging, since 1) they
ould prefer learning by videos and 2) they find it easier to express and

hare their tacit knowledge through screencasts [7] .
Scenario #1 : A fictional developer, called Bob, performs a YouTube

earch 7 for a video tutorial on how to use the Commons FileUpload 8

ibrary in his project. From the search results, he selects the highest
7 The query “commons-fileupload ” using the YouTube search engine was per-

ormed in June 2018. Note that given the same key words, YouTube may return

ifferent numbers of videos over time due to the addition of new and more

elevant videos.
8 https://commons.apache.org/proper/commons-fileupload/ .

https://www.youtube.com/
https://vimeo.com/
https://nvd.nist.gov/
https://commons.apache.org/proper/commons-fileupload/

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Fig. 1. Overview of Scenario #1.

Fig. 2. Overview of Scenario #2.

r

fi

c

e

u

2

r

d

t

g

T

m

v

b
w

B

v

p

i

N

w

e

i

f

n
t

s

c

t

2

fi

v

s

s

a

o

c

r

a

e

e

a

a

p

t

e

e

f

t

p

c

2

t

i

V

l
anked video, 9 which has close to 60,000 views and 255 likes. Bob
nds the video useful and reuses the same API in his project by repli-
ating the steps shown in the screencast. However, Bob (and most likely
ven the screencast producer) is unaware that the version of the library
sed in the video contains three known security vulnerabilities (CVE-
014-0050, CVE-2016-3092, and CVE-2016-1,000,031) 10 that are al-
eady published in the NVD repository (see Fig. 1). As a result, any
eveloper who includes this library version in their projects based on
he recommendation of YouTube tutorials (on how to perform a pro-
ramming task) are unknowingly risking the security of their project.
o identify possible impacts of security vulnerabilities, developers must
anually identify and compare the projects mentioned in a video with

ulnerable projects found in NVD entries.
Further analysis of the Commons FileUpload library shows that the li-

rary is currently directly used by more than 1800 other OSS libraries 11

ithin the Maven Central repository, further illustrating that not only
ob but also other developers and API users are often unaware of known
ulnerabilities.

Scenario #2 : Bob is a developer who uses Apache Struts 12 in his
roject and wants to know how exactly an Apache Struts vulnerabil-
ty can exploit his system, or how to patch this vulnerability. He uses
VD to check if any vulnerabilities for Apache Struts exist. However,
hile the vulnerability information exists in NVD, 13 it does not provide

nough detailed step-by-step instructions for Bob on how the vulnerabil-
ty can be exploited (or patched). As a result, he uses different keywords
rom the NVD vulnerability description to manually search the Inter-
et for such instructions. He finds several screencasts on YouTube, 14

hat might demonstrate Apache Struts vulnerabilities. Traditional video
earches rely on indexing of available metadata provided by the video
reator (e.g., title, comments). The challenge for Bob is now to identify
he video(s) that are most relevant to this vulnerability (see Fig. 2).
9 https://www.youtube.com/watch?v = 4yb16lTxbM8&t = 266s .
10 https://nvd.nist.gov/vuln/search/results?adv_search = true&cpe = cpe%3a%

fa%3aapache%3acommons_fileupload%3a1.3 .
11 https://mvnrepository.com/artifact/commons-fileupload/commons-

leupload/1.3 .
12 https://struts.apache.org/ .
13 https://nvd.nist.gov/vuln/detail/CVE-2017-9805 .
14 https://www.youtube.com/watch?v = Aaglpe4A27A .

S

d

a

t

m

d

d

v

h

As illustrated by these two scenarios, developers often resort to a
ariety of knowledge resources, including informal resources such as
creencasts and video tutorials when trying to comprehend and analyze
oftware systems. These resources allow developers to share details such
s implementation approaches, practical overview of concepts and the-
ries, and personal development experiences [8] . Though many screen-
asts and video tutorials exist, they are rarely linked with other software-
elated knowledge resources, therefore making it difficult to locate the
ppropriate resources.

Moreover, an adversary can exploit a system vulnerability in differ-
nt ways, which is also referred to as a system’s attack surface [9] . For
xample, when a vulnerable API can be used in different projects, its
ttack surface can differ significantly depending on a project context,
nd different scenarios might exist on how the vulnerability can be ex-
loited. An advantage of screencasts compared to traditional documen-
ation is that screencasts are typically generated independently from
ach other by the crowd, increasing, therefore, the chances that differ-
nt screencasts will cover potentially different attack/exploit scenarios
or a given vulnerability. Providing such a broader coverage of the at-
ack surface can provide additional insights on vulnerabilities, their im-
acts and illustrate how to patch/fix these when they occur in different
ontexts (e.g., environments, usage scenarios).

.2. Research objective

The objective of this research is to introduce a standardized represen-
ation and shared semantics of software and other related artifacts found
n heterogeneous knowledge resources. More specifically, we introduce
IDONT, an ontology for capturing the semantics of crowd-based on-

ine video repositories and integrate it with our existing SEVONT and
BSON ontologies [4] . This knowledge integration will not only provide
evelopers with direct access to vulnerability information described in
 screencast content, but also allow tracing of vulnerability descriptions
o relevant screencasts and library dependency information. Further-
ore, our approach also allows developers to identify screencasts that
emonstrate such attacks and provides developers whose projects might
irectly or indirectly (e.g., through Maven dependencies) be exposed to
ulnerable libraries with insights and direct access to information on
ow to mitigate such potential vulnerabilities.

https://www.youtube.com/watch?v=4yb16lTxbM812t=266s
https://nvd.nist.gov/vuln/search/results?adv_search=true12cpe=cpe\0453a\0452fa\0453aapache\0453acommons_fileupload\0453a1.3
https://mvnrepository.com/artifact/commons-fileupload/commons-fileupload/1.3
https://struts.apache.org/
https://nvd.nist.gov/vuln/detail/CVE-2017-9805
https://www.youtube.com/watch?v=Aaglpe4A27A

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

q

3

3

f

t

t

v

u

a

r

t

u

u

p

a

f

h

o

i

s

f

c

w

t

s

f

m

a

d

s

c

r

m

t

c

i

a

w

a

t

a

d

t

t

3

m

c

c

c

a

a

g

t

d

a

(

f

w

r

s

i

t

n

t

t

o

s

3

s

a

o

i

c

M

u

o

p

w

(

f

p

c

t

f

p

a

d

3

t

b

f

i

i

o

a

d

i

c

m

f

m

m

a

S

15 https://cve.mitre.org/ .
16 https://cwe.mitre.org/ .
Therefore, in this paper, we aim to answer the following research
uestion:

• RQ : How accurate are the bi-directional links, between known vul-
nerabilities and screencasts published on YouTube, provided by our
knowledge model?

. Background

.1. Crowd-based multimedia documentation

Software users and developers regularly search the Internet for in-
ormation and documentation that can help them in completing specific
asks. A common characteristic of such online documentation found on
he Internet is that it is often created and maintained by many and
iewed by many; hence, these are typically called “crowd-based doc-
ments ” [10] . The motivation behind creating crowd-based documents
re manifold, including 1.) for the document creators to gain an online
eputation, 2.) to better understand a new subject by creating examples
hat improve one’s expertise by teaching others [7] . Crowd-based doc-
ments can be categorized in two formats: textual and multimedia doc-
ments. Some examples of crowd-based text documentations are blog
osts, emails, Q&A sites, and wikis, whereas screencasts and podcasts
re considered multimedia documentation.

Multimedia documents, and more specifically screencasts, differ
rom traditional textual and formal documents, not only in the format
ow information is presented to the user, but also how their content is
rganized [7] . In what follows, we discuss major screencast character-
stics that make it difficult to integrate screencasts with other types of
oftware artifacts.

Abstraction level : Screencasts are composed of audio and image
rame components. Sometimes, the audio component contains speech
reated by a narrator who explains how a certain task can be done,
hile demonstrating it visually through the image frames that capture

he screen of the demonstrated application. Therefore, the content of a
creencast would be unstructured in comparison to other software arti-
acts that contain structured or semi-structured textual content. Further-
ore, some screencasts demonstrate a certain task or scenario (e.g., an

ttack using a vulnerability) mostly containing high-level information or
escriptions, omitting technical details. Therefore, the content of such
creencasts may differ from the one found in NVD in terms of the vo-
abulary used for describing the type, severity, affected products, and
eferences to advisories or solutions. This could result in potential infor-
ation ambiguity and inconsistency among the knowledge resources.

Dynamic vs. Static : Screencasts have “time ” as a meta component
hat allows for dynamically showing image frames on the screen with a
onstant frame rate. In contrast, the content of other textual documents
s static (e.g., descriptions of vulnerabilities in NVD).

Information resources : Security vulnerability screencasts are cre-
ted by security researchers and white hat hackers from around the
orld. Various information resources exist in the screencasts’ content
nd metadata [7] . The content contains the domain expert’s knowledge
hat is captured by image frames, speech, the sequence of GUI events
nd user actions (clicking buttons, opening menus, etc.), while the meta-
ata contains captions, publish date, creator, comments, etc. However,
he availability and quality of the information resources that come from
he screencasts’ content can vary significantly among screencasts [1] .

.2. Security vulnerabilities

In the software security domain, a software vulnerability refers to
istakes or facts related to security problems in software, networks,

omputers, or servers. Such vulnerabilities represent security risks that
an be exploited by hackers to gain access to system information or
apabilities [11] . Among these systems, reuse of software libraries poses
 significant threat, since vulnerabilities in a single component might
ffect, through their intended reuse, many different systems across the
lobe.

Advisory databases (e.g., NVD) were introduced to provide a cen-
ral place for standardizing the reporting of vulnerabilities and to raise
eveloper awareness about the existence of such vulnerabilities. These
dvisory databases rely on the Common Vulnerabilities and Exposures
CVE), 15 a publicly available dictionary for vulnerabilities that allows
or more consistent and concise use of security terminology in the soft-
are domain. Once a new vulnerability is revealed and verified by secu-

ity experts, information about this vulnerability (e.g., unique identifier,
ource URL, vendor URL, affected resources, and related vulnerabilities
nformation) is added to the CVE database. In addition to the CVE en-
ry, each vulnerability will also be classified using the Common Weak-
ess Enumeration (CWE) 16 database. CWE provides a common language
o describe and classify software security vulnerabilities based on their
ype of weakness. NVD, CVE, and CWE can be considered as being part
f a global effort to manage the reporting and classification of known
oftware vulnerabilities.

.3. Dependency management - Maven

Maven, hosted by the Apache Software Foundation, is an open-
ource build automation tool used primarily for Java projects. In Maven,
 software project defines its dependence on any of its artifacts as part
f its XML configuration file (also called the POM file), which is stored
n the central repository. Upon the build of a project, Maven dynami-
ally downloads the requested versions of all required Java libraries and
aven plug-ins from the Maven Central repository into a local cache for

se by the project. The Maven Central repository provides open source
rganizations with an easy, free, and secure way to publish their com-
onents for access by millions of developers. The repository is updated
ith new projects and new versions of existing projects that can depend

in)directly on different versions of the same dependency.
Transitive dependencies : One of the core dependency management

eatures provided by Maven are transitive dependencies. If project-A de-
ends on project-B, which in turn depends on project-C, then project-C is
onsidered a transitive dependent of project-A. Part of Maven’s appeal is
hat it can manage these transitive dependencies and shield developers
rom having to keep track of all build dependencies required to com-
ile and run an application [12] . As a result, one can now just include
 Java library (e.g., Spring Framework) without having to specify the
ependencies of that library oneself.

.4. Ontologies and semantic web

The Semantic Web has been defined by Berners-Lee et al. as “an ex-
ension of the Web, in which information is given well-defined meaning,
etter enabling computers and people to work in cooperation ” [13] . It
orms a Web from documents to data, where data should be accessed us-
ng the general Web architecture (e.g., URIs). Using this Semantic Web
nfrastructure allows data to be linked, just as documents (or portions
f documents) are already, allowing data to be shared and reused across
pplication, enterprise, and community boundaries. In a Semantic Web,
ata can be processed by computers as well as by humans, including
nferring new relationships among pieces of data. HTML, for instance,
an present information in terms on how information is displayed by
achines to the user, but it lacks the necessary semantics to allow for

urther machine interpretation of the displayed facts in terms of their
eanings. The Semantic Web overcomes this limitation by adding se-
antics to the information, making information machine processable

nd linkable. For example, the YouTube video “File Upload in Java
ervlet ” used in our motivating example (Scenario #1) has been created

https://cve.mitre.org/
https://cwe.mitre.org/

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

b

t
e

t

v

k

l

c

u

m

p

S

b

d

t

u

[

t

i

t

s

l

f

d

(

h

(

g

i

f

s

p

l

d

o

m

r

w

e

g

c

c

w

t

i

r

d

g

3

l

s

n

t

t

i

a

Fig. 3. The SV-AF Ontologies Abstraction Hierarchies.

c

i

a

v

r

t

b

a

a

g

a

a

a

w

i

[

e

p

s

t

e

d

T

s

s

o

U

w

t

i

o

t

a

g

a

y the YouTube contributor “Telusko ”. Analyzing the HTML source of
he web page would allow us to identify that a text string “Telusko ”
xists, but in contrast to the Semantic Web, HTML does not allow us
o reason or associate that “Telusko ” corresponds to the author of the
ideo.

For machines to understand and reason about knowledge, this
nowledge needs to be represented in a well-defined, machine-readable
anguage. Ontologies provide a formal and explicit way to specify con-
epts and relationships in a domain of discourse. The Semantic Web
ses the Resource Description Framework (RDF) as its underlying data
odel to formalize the meta-data of real-world resources as subject-
redicate-object triples, which are stored in triple-stores. A resource in
emantic Web can be anything: a person, project, software, a security
ug, etc. Triple-stores are Database Management Systems (DBMS) for
ata modeled using RDF. Unlike Relational Database Management Sys-
ems (RDBMS), which store data in relations (or tables) and are queried
sing SQL, triple-stores store RDF triples and are queried using SPARQL
13] . The RDF data-model is domain independent, and users define on-
ologies using an ontology definition language.

The Web Ontology Language (OWL) [14] is an example of such a def-
nition language and has been standardized by the W3C. 17 It supports
he creation of machine-understandable information to enable Web re-
ources to be automatically processed and integrated. The OWL-DL sub-
anguage, is based on Description Logics (DLs) [15] . DL is a logic-based
ormalism using predicate calculus to define facts that can formally
escribe a domain. Therefore, DLs are a set of axioms called a TBox
e.g., Doctor ⊑Person) and set of facts called ABox (e.g., {Parent(John),
asChild(John, Mary)}). Both TBox and ABox form a Knowledge Base
KB) and are often written 𝐾 = ≺ 𝑇 , 𝐴 ≻. The RDF data-model forms a
raph where nodes (subject, object) are connected through edges (pred-
cates). The SPARQL query language [16] is used to retrieve information
rom RDF data-model graphs.

Ontologies vs. Models . A model is “an abstraction that represents
ome view on reality, necessarily omitting details, and for a specific pur-
ose ” [17] . In SE, ontologies and models try to address the same prob-
ems (representing the software complexity abstractly) but from very
ifferent perspectives. The differences between ontologies and models
ften result in different artifacts, uses, and possibilities. For example,
odern SE practices advise developers to look for components that al-

eady exist when implementing functionality, since reuse can avoid re-
ork, save money, and improve the overall system quality [18] . In this

xample, ontologies can provide clear advantages over models in inte-
rating information that normally resides isolated in several separate
omponent descriptions. Furthermore, models (e.g., UML) rely on the
losed world assumption, while ontologies (e.g., OWL) support open-
orld semantics. OWL, an example ontology language, is a “computa-

ional logic-based language ” that supports full algorithmic decidability
n its OWL-DL (description logic) variant. It is not possible to use algo-
ithms supported by OWL (e.g., subsumption) for modeling languages
ue to their different semantics. Additional differences between ontolo-
ies and models are reported and discussed elsewhere [19] .

.5. SV-AF: security vulnerability analysis framework

It is generally accepted that inadvertent programming mistakes can
ead to software security vulnerabilities and attacks [11] . Mitigating
uch vulnerabilities can become a major challenge for developers, since
ot only their own source code might contain exploitable code, but also
he code of third-party APIs or external components used by their sys-
em. In our previous work [4] , we introduced SV-AF to guide developers
n identifying the potential impact of vulnerabilities at both the system
nd global level.
17 https://www.w3.org/ .
SV-AF uses a bottom-up modeling approach where system-specific
oncepts are first extracted, followed by an iterative process of abstract-
ng shared concepts into upper ontologies. To minimize any potential
bstraction error, three Ph.D. students from our lab 18 performed a cross-
alidation of the abstracted ontology layers, reaching an average inter-
ater agreement of 95%. The disagreements were resolved through fur-
her discussion. The resulting four-layer modeling hierarchy (Fig. 3) is
ased on a metadata modeling approach introduced by the Object Man-
gement Group (OMG), 19 with each layer providing a different level of
bstraction in terms of its purpose and design rationale.

General Concepts : Classes in the top layer represent omnipresent
eneral concepts found in the software evolution and security domain.

Domain-Spanning Concepts : This layer captures concepts that span
cross several subdomains (e.g., security databases, video repositories,
nd source code).

Domain-Specific Concepts : Concepts in this layer are common
cross resources in a domain. At the core of the domain-specific layer,
e have several domain ontologies: (1) Software sEcurity Vulnerabil-

ty ONTologies (SEVONT), (2) Software Evolution ONtologies (SEON)
5] and (3) Software Build System (Dependencies) ONtologies (SBSON).

System-Specific Concepts : Concepts in this layer extend the knowl-
dge from the upper layers to specific vulnerability databases, tool im-
lementations, or programming languages. For example, the Maven
ystem-specific ontology will contain concepts found only in the Maven
ool.

SV-AF uses the Probabilistic Soft Logic (PSL) framework [20] to
stablish weighted links between ontological models of vulnerability
atabases (SEVONT) and software dependency repositories (SBSON).
hese traceability links are created based on semantically identical or
imilar concepts within the different knowledge sources. In this case,
imilarity among SEVONT-SBSON instance pairs are determined based
n the extracted literal information such as name, version and vendor.
sing manually defined rules, the PSL framework computes similarity
eights between all possible instance pairs in the knowledge base (to-

al of |SEVONT| x |SBSON| instance pairs). These computed similar-
ty weights, based on a given similarity threshold, are used to infer
wl:sameAs relations between similar instances found in the two on-
ologies. The owl:sameAs construct is a built-in OWL predicate used to
lign two concepts from different ontologies. More details on the ontolo-
ies, ontology alignment process, and evaluation of the SEVONT-SBSON
lignment can be found elsewhere [4] .
18 http://aseg.encs.concordia.ca .
19 http://www.omg.org/ .

https://www.w3.org/
http://aseg.encs.concordia.ca
http://www.omg.org/

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Fig. 4. Overview of the overall methodology. SV-AF is extended with ontologies for the domain of Screencast repositories.

4

4

l

i

I

s

m

4

4

c

a

a

s

m

a

t

k

o

p

s

. Methodology

.1. Overview

The knowledge modelling approach proposed in this paper estab-
ishes traceability links between screencasts (e.g., YouTube) and exist-
ng software vulnerability and dependency knowledge found in SV-AF.
n what follows, we describe how we extend SV-AF with knowledge from
creencasts. Fig. 4 illustrates our overall research methodology and its
ajor steps.

.2. Fact extraction process

.2.1. Fact extraction from video artifacts

Video portals such as YouTube contain videos that are created by the
rowd to document different aspects of software systems. These videos
nd screencasts contain different kinds of information, that can be mined
nd analyzed to support the linking between video content and other
oftware artifacts. In what follows, we discuss in more detail the infor-
ation being extracted and the linking opportunities provided by our

pproach.

• Speech: If a video has a narrator that describes the content of a
how-to video, the speech content may share similar words with the
image frames shown in the screencast, as well as the relevant entity
in NVD.
○ Information extraction : In case closed captioning is enabled for a

video, we extract the screencast’s subtitles using existing tools
(e.g., youtube-dl 20). If closed captioning is not available, we au-
tomatically transcribe the spoken text.

○ Linking opportunities : If the transcription of a video mentions the
CVE ID of a vulnerability, one can use this CVE ID to link the
video to the relevant NVD entry. However, automatic speech to
text tools will not always transcribe such information accurately.
To improve the accuracy of traceability links, we also take ad-
vantage of Information Retrieval (IR) (see Section 4.3.1) to lo-
cate similarities between artifacts such as the transcribed speech,
NVD entries, and image frames (GUI text).

• Image frames: Screencasts capture the interactions with the GUI of
a software application or with a terminal window. As a result, the
textual information of a typical window screen (i.e., a screencast im-
age frame) will often contain corresponding string literals found in
the vulnerability dataset. Fig. 5 illustrates matching string literals
20 https://youtube-dl.org .
between speech, image frame text, and vulnerability description in
NVD. Image frames also capture graphical cues such as icons, frames,
and colors that can be used to identify different parts of the software
application or the environment in which the user is working. Ex-
tracting such graphical cues requires image processing techniques
that will be explored in future work.
○ Information extraction : First, we extract image frames of the

screencasts using FFmpeg 21 at a rate of 1 frame per second, to
avoid having many repetitive image frames. We then perform
Optical Character Recognition (OCR) [21] on each image frame,
using Google Vision API 22 to recognize the text shown in the im-
age frame. This text, which is enclosed within neighboring pixels
on the images, is returned as a sentence or word together with the
coordinates where the words are located on the image frames.

○ Linking Opportunities : If an image frame contains a CVE ID, OCR
will be able to extract this CVE ID with high accuracy. Such an
extracted CVE ID can then again be linked to the NVD repository.
In addition, similar to spoken text, we can use the text on the GUI
as an information source to link a video with NVD entries. With
each image frame, we also have its position (timestamp) within
the video, which allows us to directly link external knowledge
resources to the relevant part of the video.

• Metadata: Videos published on YouTube typically include metadata
that can be extracted and analyzed.
○ Information extraction: Among the metadata to be extracted are

video title, description, published date, comments, number of
likes and dislikes, number of views, closed captioning (if enabled)
and other information related to the screencast [1] .

○ Linking opportunities: This metadata often contains important in-
formation that can be added to the video documents to support
the linking of screencast content to NVD vulnerabilities. For ex-
ample, the publication date can be used to help identify vulner-
abilities discussed in a video.

It should be noted that when preprocessing text extracted from the
ranscribed speech, image frames, and metadata, we do not remove to-
ens that combine characters and numbers since CVE IDs are composed
f these characters (Fig. 5 contains a sample CVE ID). We, however, ap-
ly tokenization, removal of stop words and punctuation, and perform
temming to clean up the data before populating the ontology in 4.3.
21 http://ffmpeg.org/ .
22 https://cloud.google.com/vision/ .

https://youtube-dl.org
http://ffmpeg.org/
https://cloud.google.com/vision/

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Fig. 5. Similar string literals in speech, image text, and NVD description.

4

i

E

n

4

s

o

(

m

a

p

o

fi

4

s

s

p

e

D

r

r

a

t

s

p

T

A

t

d

h

s

o

p

h

p

u

S

S

d

t

t

T

S

o

o

4

.2.2. Fact extraction from vulnerability artifacts

Security databases (e.g., NVD) provide a central place for report-
ng vulnerabilities affecting existing software applications and systems.
xtracting facts from NVD consists of downloading and parsing its vul-
erability XML feeds.

○ Information extraction: In NVD, a vulnerability is identified by its
unique CVE ID. NVD also captures additional vulnerability details,
such as: vulnerability disclosure date, severity score, vulnerability
summary, and sources of information that demonstrate the vulner-
ability. Each vulnerability has a list of affected products associated,
described by its Common Platform Enumeration (CPE) 23 a standard
machine-readable format for encoding names of IT products and
platforms.

○ Linking opportunities: Screencasts may contain some of the informa-
tion in published vulnerabilities such as the CVE ID and vulnerability
summary. The CVE ID may be found in the video’s title, description,
speech, or image content. Also, the same words that are used in the
description of a vulnerability in NVD may be used in the screencast
data (i.e., speech, images, metadata). Therefore, we extract this in-
formation from the vulnerabilities to be further used in our linking
approach.

.2.3. Fact extraction from Maven artifacts

Maven artifacts describing the dependencies used by a project are
tored in the Maven Central Repository. Extracting Maven facts consists
f transforming the Maven Central repository index into a list of GAV
groupId, artifactId, and version) coordinates - the three required ele-
ents to describe every project. The groupId is a unique name amongst

n organization, and the artifactId is generally the name by which the
roject is known. Several projects developed by the same organization
r under the same parent project will have the same groupId. The POM
le for each GAV entry is parsed and populated into our knowledge base.

○ Information extraction: As stated above, each project release in
Maven Central is identified by its unique GAV coordinate. The POM
file for each GAV entry captures various project details, such as the
project name, dependencies on other project releases, organization,
developers, release date, and links to its repositories (e.g., issue-
trackers and CVS).

○ Linking opportunities: The details captured within each project’s
POM file provide several linking opportunities to existing knowledge
bases. For example, project identification details such as the GAV,
project name, or URL can be used to identify project entities in the
textual descriptions of videos based on string matching. They can
23 Common Platform Enumeration – http://cpe.mitre.org .

S

t
also be used to identify products affected by vulnerabilities within
the NVD dataset (see [22]). Furthermore, project dependency infor-
mation (using the < dependency > tags) can be used to establish links
to the text extracted from source code samples in videos.

.3. Knowledge modeling – extending SV-AF with knowledge from

creencast repositories

In this section, we introduce VIDONT, our ontology to capture the
emantics of crowd-based online video repositories (e.g., YouTube). As
art of our knowledge modeling, we then integrate VIDONT with our
xisting SV-AF ontologies at the domain level. The integration of VI-
ONT and SV-AF allows not only for knowledge sharing and reuse across

epository boundaries by eliminating traditional information silos these
esources have remained, but also allows for novel types of vulnerability
nalysis and documentation approaches.

Fig. 6 provides an overview of the main classes and object proper-
ies across all layers of our knowledge model that are used for linking
creencasts to project vulnerabilities. To improve the readability of this
aper, we denote OWL classes in italic and properties are underlined.
he core concepts used in our model are Vulnerabilities, Videos , and APIs .
 project version that is released to the public or customer is referred

o as a BuildRelease (a BuildRelease can dependOn APIs from other Buil-

Releases). Different project metadata are captured using the hasName ,
asDescription , hasURL , and hasVersionNumber properties. Whenever
uch a project is identified to be affectedBy a Vulnerability , a description
f a vulnerability is publicly disclosed in repositories such as NVD. Each
ublicly disclosed vulnerability is issued a unique ID, captured by the
asVulnerabilityID property.

Details of existing vulnerabilities, their exploits, and how such ex-
loits can be mitigated are describedBy Videos provided by Publishers

sing video repositories such as YouTube. A publisher isA type of project
takeholder . In our model, published videos have information encoded as
peech and Image frames. Videos have metadata associated such as title,
escription, and published date. Keywords and tags for a video are cap-
ured through the label property. Typical for crowd-based videos is that
hey allow for Comments and discussions from other users and viewers.
he link between videos and vulnerabilities can be established using a
imilarityMeasure that measures the relevance of a given video in terms
f covering a known vulnerability. For a complete description of our
ntologies, we refer the reader to our earlier work [4 , 22] .

.3.1. Ontology alignment and knowledge inferencing

To further improve the knowledge integration between the VIDONT,
EVONT and SBSON ontologies, we establish semantic traceability links
hrough ontology alignment. During ontology alignment, identical or

http://cpe.mitre.org

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Fig. 6. An overview of concepts and properties in our integrated knowledge model.

Table 1

Ontology Namespaces.

Namespace URL

RDF http://www.w3.org/1999/02/22-rdf-syntax-ns#

OWL http://www.w3.org/2002/07/owl#

SBSON http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/build.owl#

SEON http://se-on.org/ontologies/general/2012/02/main.owl#

SEVONT http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/vulnerabilities.owl#

VIDONT http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2018/01/video.owl#

MEASURE http://se-on.org/ontologies/general/2012/02/measurement.owl#

e

t

(

t

l

u

k

i

l

c

k

p

r

t

n

o

s

e

d

<

s

T

a

a

t

a

n

w

a

p

u

m

Q

m

𝑠

w

m

l

24 https://www.w3.org/Submission/SWRL/ .
quivalent concepts, properties or facts in multiple ontologies are iden-
ified by analyzing the data captured as part of ontology descriptions
e.g., labels, comments, attributes and types, relations with other enti-
ies) and by using logical reasoning to infer correspondences. By estab-
ishing these links, we can reduce the semantic gap between the individ-
al ontologies, which is an essential prerequisite for providing a unified
nowledge model.

In what follows, we discuss in more detail how we use Semantic Web
nference techniques to establish these additional semantic traceability
inks between our ontologies. The reasoning services allow us to dis-
over additional relations to other knowledge and facts captured in our
nowledge base. It should be noted that we omitted the ontology names-
ace prefixes (summarized in Table 1) from our illustrative queries and
ules shown in this section to improve their readability.

SEVONT and VIDONT Ontology Alignment. Screencasts and other
utorial videos often contain references and keywords related to a vul-
erability, such as the CVE ID in the video title, description, speech,
r text encoded in image frames. Our alignment process links in-
tances in the two ontologies based on the presence of such refer-
nces and keywords. These vulnerability references are used as tags
uring the video data extraction process. For example, the triple
 https://youtu.be/Wewl5fAhnXA > rdfs:label “CVE-2015-0096 ” repre-
ents a video resource tagged with a CVE ID that was found in its title.
his knowledge can now be used to perform terminology matching, by
ligning instances from the vulnerability and video ontologies. For the
lignment, we use the Semantic Web Rule Language (SWRL) 24 to create
he rule in Listing 1 , which can now infer links between vulnerability
nd video instances.

However, the alignment rule in Listing 1 only applies when a vul-
erability’s CVE ID is explicitly mentioned in a video. To support cases
here no CVE ID is explicitly mentioned, we complement our alignment
pproach with the BM25 probabilistic relevance model [23] . BM25 is a
opular model used in Information Retrieval (IR) to rank a set of doc-
ments based on their relevance to words in a given query. It is based
ainly on the term and document frequency measures. Given a query,
, containing keywords q 1 ,…, q n , the BM25 score of a document, D, that
easures the similarity between Q and D is calculated as:

𝑐𝑜𝑟𝑒 (𝐷, 𝑄) =

𝑛 ∑
𝑖 =1

⎛ ⎜ ⎜ ⎜ ⎝
𝑁

𝑑𝑓 (𝑞 𝑖)
∗

𝑡𝑓
(
𝑞 𝑖 , 𝐷

)
∗
(
𝑘 1 + 1

)
𝑡𝑓
(
𝑞 𝑖 , 𝐷

)
+ 𝑘 1

(
1 − 𝑏 + 𝑏 ∗ |𝐷 |

𝑎𝑣𝑔𝑑𝑙

)
⎞ ⎟ ⎟ ⎟ ⎠
, (1)

here tf (q i , D) is 𝑞 ′
𝑖
𝑠 term frequency in D, df (q i) is the number of docu-

ents containing q i , |D| is the length of D in words, avgdl is the average
ength of all documents used in the relevance scoring, N is the total num-

http://www.w3.org/1999/02/22-rdf-syntax-ns\043
http://www.w3.org/2002/07/owl\043
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/build.owl\043
http://se-on.org/ontologies/general/2012/02/main.owl\043
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/vulnerabilities.owl\043
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2018/01/video.owl\043
http://se-on.org/ontologies/general/2012/02/measurement.owl\043
https://youtu.be/Wewl5fAhnXAce
https://www.w3.org/Submission/SWRL/

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Listing 1. SWRL rules for aligning CVE facts with the video ontology.

Fig. 7. Ontology alignment based on BM25

relevance scores.

b

t

r

d

l

i

t

t

v

m

W

t

L

S

k

s

m

m

t

V

S

V

s

t

p

b

i

S

k

t

v

R

t

b

p

t

i

f

o

b

er of documents indexed, and k 1 and b are free parameters used to scale
he document term frequency and document length respectively.

BM25 in Ontology Alignment : Using BM25 (Eq. 1), we can de-
ive the relevance score for each vulnerability-video pair. These
erived scores become confidence measures for the alignment
inks between a vulnerability-video pair, and are later material-
zed into our knowledge base using the SimilarityMeasure class and
he measure:measuresThing and measure:hasMeasureValue proper-
ies (see Fig. 7). The measure:measuresThing property identifies the
ulnerability and video facts that are being compared, while the
easure:hasMeasureValue property stores the numeric similarity value.
ith this new knowledge, the SWRL rule in Listing 2 can be executed

o establish vidont:describedBy relations (similar to those inferred in
isting 1) between vulnerability and video instances captured by the
EVONT and VIDONT ontologies.

Given our populated ontologies, it is now possible to infer implicit
nowledge using the describedBy link between a vulnerability and a
creencast. These links are instances where either a CVE ID is explicitly
entioned in a video (Fig. 8 a) or the link is inferred when the similarity
easure between the vulnerability index and video text queries is within

he specified threshold (Fig. 8 b).
SBSON and VIDONT Ontology Alignment. Having the SEVONT-

IDONT alignment and existing SEVONT-SBSON alignment (see
ection 3.5), we are now able to infer indirect traceability links between
Listing 2. SWRL rules for aligning CVE facts with the
IDONT and SBSON by taking advantage of Semantic Web inferencing
ervices such as owl:sameAs and owl:TransitiveProperty .

Same-As Inference : The same-as inference is commonly used to align
wo semantically equivalent concepts or individuals. For example, in our
rior work [4 , 22] , we used the owl:sameAs property to align vulnera-
le project releases from the SEVONT ontology to their corresponding
nstances in SBSON ontology based on a similarity threshold. Using the
PARQL query shown in Listing 3 , we can now take advantage of this
nowledge to establish indirect links from videos to project releases in
he SBSON ontology (e.g., retrieve metadata of projects affected by a
ulnerability described in a video).

Transitive closure inference : A relation R is said to be transitive if
(a,b) and R(b,c) implies R(a,c); this can be expressed in OWL through

he owl:TransitiveProperty construct. In SBSON, we define a dependency
etween projects using the bi-directional transitive seon :dependsOn
roperty to allow us to retrieve a list of all releases that have a direct or
ransitive dependency on a specified project release, and vice versa. Us-
ng the SPARQL query in Listing 4 , we can now establish indirect links
rom videos to this project dependency knowledge in the SBSON ontol-
gy (e.g., to verify if a project transitively uses another project affected
y a vulnerability described in a video).
 video ontology based on their relevance score.

Listing 3. SPARQL query returning videos and related project

details.

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Fig. 8. Inferring the describedBy link between vulnerability and screencast instances when a CVE ID is (a) explicitly mentioned in a video, and (b) not mentioned.

Listing 4. SPARQL query returning videos, re-

lated projects, and their dependencies.

5

d

r

5

5

h

s

d

p

t

o

d

5

u

c

“

v

t

l

a

w

t

t

a

s

i

d

s

v

o
. Case study: CVE-2017-5638

In what follows, we report on results from a case study that we con-
ucted to illustrate the applicability of our approach and to answer our
esearch question from Section 2.2 .

.1. Case study setup

.1.1. Dataset

We use a publicly disclosed vulnerability, CVE-2017-5638, 25 which
as been reported in the NVD repository as a vulnerability affecting
everal Apache Struts 26 releases. Our dataset for this case study includes
ata from NVD, Maven Central, and YouTube.

Our vulnerability dataset consists of all NVD vulnerability XML feeds
ublished since 1990. The dataset includes 74,402 unique vulnerabili-
ies that affect 186,212 projects. Our Maven Central dataset consists
f 178,763 unique projects with 1849,756 releases. 27 For our video
ataset, we downloaded 48 YouTube videos related to the CVE-2017-
638 vulnerability.
25 https://nvd.nist.gov/vuln/detail/CVE-2017-5638 .
26 https://struts.apache.org/ .
27 Dataset last updated 2017-10-23

i

a

p

a

The videos were selected using search queries developers would
se when manually searching YouTube for videos related to this spe-
ific vulnerability: “CVE-2017-5638 ″ , “CVE-2017-5638 Apache Struts ”,
input validation vulnerability Apache Struts ”, and “input validation
ulnerability exploitation ”, with input validation corresponding to
he CWE vulnerability category. From these search results, we se-
ected 48 videos that also matched additional selection criteria such
s video length and video resolution. We only selected screencasts
ith a length between 20 s and 12 min to ensure that they con-

ain sufficient data in terms of speech and video content and where
he screencast was recorded as High Definition (HD) to allow for
 more accurate information extraction from the image processing
tep.

Of the selected 48 videos, 39 videos explicitly mention the CVE ID
n either their title, description or video content. The 9 videos that
o not mention explicitly the CVE ID were manually evaluated to en-
ure they were related to the CVE-2017-5638 vulnerability. Among the
ideos only 13 videos have an English narration. Table 2 provides an
verview how many of the videos in our dataset capture the CVE-ID
n the different video artifacts (speech part, image frames, video title,
nd video description), with (

√
) indicating that the CVE-ID was ex-

licitly mentioned and (✗) indicating the CVE-ID was not mentioned
t all.

https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://struts.apache.org/

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Table 2

Classification of the video dataset based on the presence of

CVE ID.

Presence of CVE ID

title description image frames speech # of videos

✗ ✗ ✗ ✗ 9 √
✗ ✗ ✗ 5

✗
√

✗ ✗ 3

✗ ✗
√

✗ 2 √ √
✗ ✗ 2 √

✗
√

✗ 11

✗
√ √

✗ 5 √ √ √
✗ 9 √ √ √ √

2

5

t

(

s

o

o

t

u

r

w

f

r

o

a

c

e

p

a

d

v

s

m

e

t

p

i

b

i

t

m

l

i

s

1

a

i

5

T

p

v

s

m

n

a

Fig. 9. Precision and recall of our CVE ID alignment, using only video title,

description, image frames (“gui ”), speech, or all the above (“all ”).

t

t

e

c

𝑅

a

p

c

5

v

o

b

4

t

a

s

t

r

v

a

t

a

t

a

v

o

f

C

w

s

c

d

o

t

I

a
.1.2. Applying our methodology

For all screencasts, we downloaded the audio (speech part) and au-
omatically transcribed the speech using IBM Watson’s Speech-To-Text
STT) service. In our previous work [10] , we have conducted a compari-
on of different STTs by manually transcribing videos and comparing the
utput of the IBM Watson STT tool against those of 4 other tools in terms
f precision and recall values. In this comparison, IBM Watson obtained
he highest precision and recall values (0.75 and 0.88, respectively). We
sed FFmpeg to extract image frames from the downloaded videos at a
ate of 1 frame per second (to reduce the number of continuous frames
ith duplicate content). Next, we manually checked and removed image

rames at the beginning and end of the screencasts which contain non-
elevant information (e.g., greetings, introducing the YouTube channel
r video creator, inviting people to like/subscribe, etc.) to reduce the
mount of noise in our screencast data set. It should be noted that this
ould be also be automated (e.g., by removing the first and last 10 s of
ach video. Then we use Google Vision API’s text recognition service to
erform Optical Character Recognition (OCR) and automatically extract
ll text from the remaining image frames.

We also automatically extracted the title, description, publication
ate, and publisher information from the metadata provided with each
ideo (if applicable) using the youtube-dl tool. Using a regular expres-
ion, we then searched for the CVE ID in the speech, image text, and
etadata to label each video with a CVE ID and populate our knowl-

dge base.
As part of the next processing step, we create an inverted index using

he extracted text from the vulnerability dataset as our document cor-
us. More specifically, for this index, we treat each vulnerability as an
ndividual document, with its own document id and its textual content
eing a bag of words. We then apply a simple preprocessing step consist-
ng of case-folding, stop word removal, and stemming before indexing
he document. For our case study, we use the extracted text from the
etadata, images, and speech of our videos as query terms and popu-

ate the SimilarityMeasure instances (using the BM25 equation discussed
n Section 4.2.3) for the Top 10 ranked vulnerabilities returned by each
earch query. Applying the semantic rules introduced earlier (Listings
 and Listing 2), we can now automatically infer bidirectional trace-
bility links from the screencast instances to their related vulnerability
nstances.

.1.3. Evaluation measures

For our case study, we evaluate the linking accuracy of our approach.
he objective of this evaluation is to validate whether our modeling ap-
roach is indeed capable of inferring hidden and indirect links between
ideos and other software repositories.

As part of our evaluation, we compared the retrieved ranking re-
ults against our video dataset oracle (baseline) that was created using
anually selected and verified videos covering the CVE-2017-5638 vul-
erability. Since in most cases we only have one relevant result (vulner-
bility) that matches a query (video), we used the position of the first
rue positive in the search result ranking as our assessment criteria. For
he evaluation, we used the Reciprocal Rank (RR) measure. RR consid-
rs the position of the first true positive in the search results [24] and is
alculated using the following formula:

𝑅 =

1
𝑟𝑎𝑛𝑘 𝑜𝑓 𝑡ℎ𝑒 1 𝑠𝑡 𝑇 𝑃

(2)

For the second part of the study, we used BM25 [24] to evaluate the
bility of our approach to rank documents that do not contain an ex-
licit mentioning of the CVE ID in neither their metadata nor screencast
ontent.

.2. Case study results

RQ. How accurate are the bi-directional links, between known

ulnerabilities and screencasts published on YouTube, provided by

ur knowledge model ?
In what follows, we evaluate the linking accuracy of our approach,

y comparing it with our baseline (our initial labeled video dataset) of
8 vulnerability-screencast pairs. The objective of this section is to illus-
rate that our modeling approach is indeed capable of inferring hidden
nd indirect links between video and other software repositories with
ufficient accuracy.

For our evaluation, we use precision and recall measures, with
rue positives being the number of vulnerability-screencast pairs cor-
ectly matched, while false positives correspond to the number of
ulnerability-screencast pairs incorrectly matched. For recall, false neg-
tives correspond to the number of correct vulnerability-screencast pairs
hat were not identified by our approach.

Evaluation of CVE ID Alignment: Fig. 9 shows the results of our
pproach when using our 39 videos that explicitly mention a CVE ID in
heir title, description or content. The results show that, our approach
chieves, as expected, high precision values of 1.0 and 0.96 when a
ideo explicitly mentions a CVE ID in its title or description. During
ur analysis, we also observed that the text extracted from the image
rames explicitly mentioned several other CVE IDs (usually related to the
VE-2017-5638 vulnerability) which resulted in a low precision of 0.30,
hich also affects the precision of our approach when all information

ources are used together.
A manual inspection of the inferred links revealed that the lower re-

all (Fig. 9) for the individual information resources in a screencast is
ue to inaccuracies found in the transcription, text of the image frames,
r the metadata of the screencasts. Also, depending on the accuracy of
he speech to text transcriptions, numbers mentioned within the CVE
D in the speech part of a video are often erroneously transcribed into
nother word(s), which no longer allow us to link these CVE IDs with

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Fig. 10. Reciprocal Rank results for BM25 Alignment evaluation.

t

b

a

t

t

w

f

r

u

a

t

e

c

r

r

s

s

r

c

v

a

t

p

i

v

d

r

s

g

t

a

r

n

v

n

s

v

s

o

v

o

t

f

i

R

9

m

p

i

c

v

v

p

r

v

t

m

t

i

i

t

a

n

T

h

p

(

b

v

t

c

a

m

v

t

w

d

b

i

s

i

a

i

s

t

5

e

a

l

s

m

g

m

s

b

t
heir NVD counterparts. However, if all information resources are com-
ined, we were able to achieve a higher recall of 0.81. The evaluation
lso highlights the impact of different information resources and their
rade-off on precision and recall. Using only available title and descrip-
ion information, our approach can achieve high precision, but recall
ill be quite low. In contrast, by taking advantage of all available in-

ormation resources, our linking approach will achieve a much higher
ecall but also a significant lower precision, due to many false positives.

Evaluation of BM25 Relevance Alignment : As our previous eval-
ation showed, our approach can link in most cases successfully NVD
nd Video content if a CVE ID is present. In this part of our evalua-
ion, we focus on the ability to rank documents that do not contain any
xplicit mentioning of the CVE ID in either their metadata or the screen-
ast content with the description found for the vulnerability in the NVD
epository. As part of this evaluation process, we are interested in the
anking of relevant (true positive) results in the top hits of the result
et. For the evaluation, we first manually searched and removed all in-
tances of CVE IDs found in the 48 videos of our video dataset and then
e-applied our linking approach on this data set. For the evaluation, we
ompared the linking results, with the results from our initial (labeled)
ideo dataset. Fig. 10 shows that the median RR for our dataset without
ny explicit mentioning of the CVE ID is 0.01, which means that our
op 10 results rarely contain any true positive. The main reason for the
oor performance of our approach is that the vulnerability related text
n the analyzed videos is too generic and inclusive, to allow for a rele-
ant matching between the video content and a specific CVE ID (and its
escription).

To further improve the ranking results of our approach, we nar-
owed the vulnerability search space by taking advantage of available
emantic information such as affected projects and vulnerability cate-
ory keywords found in the video text. We used DBPedia Spotlight, 28 a
ool which automatically annotates mentions of DBPedia 29 resources in
 given text, to identify any reference to a software product (which are
epresented as entities of DBpedia’s Software class) in our video and vul-
erability datasets. DBpedia is a linked-data knowledge base that pro-
ides a rich source of RDF descriptions of million entities such as compa-
ies and products. Using this approach, we can reduce our vulnerability
earch space (from 74,402 to 73 vulnerabilities), by including only those
ulnerabilities which were annotated with the same software products
hown in the videos of our dataset. As the RR results in Fig. 11 (a) show,
ur semantic alignment process shows a significant improvement for RR
alues when all our information sources are used on the reduced number
f vulnerabilities. Using only the text from the image frames (i.e., gui
28 https://www.dbpedia-spotlight.org/ .
29 https://wiki.dbpedia.org .

O

l

u
ext) resulted in the highest RR value of 0.16. This can be interpreted as
ollows: 100% of the time, the first true positive (matched vulnerabil-
ty) was ranked in the 6th position in the result set. The average median
R value over all boxplots increased from 0.01 to 0.11, representing a
th position rank for the first true positive, 50% of the time. A further
anual analysis of the results showed that 3 videos are ranked in the 1st
osition when we used only video descriptions, and 1 video is ranked
n the 1st position when we used either the video titles only or all the
ombined information sources as our query terms during the alignment.

We further reduced the vulnerability search space (from 73 to 14
ulnerabilities) by performing a hierarchical search, first by comparing
ideo text with vulnerability category (CWE) descriptions and then com-
aring videos with vulnerabilities within the top 10 ranked category
esults. Using this hierarchical search approach, we now only include
ulnerabilities of the same category. Fig. 11 (b) shows the RR results af-
er applying this filtering by “product and CWE category ”. The average
edian RR value of all the boxplots improved to 0.27, indicating that

he 1st true positive is now ranked 50% of the time at the 4th position
n the results set. Also, the highest median RR value increased to 0.5,
ndicating that the 1st true positive is now 100% of the time ranked in
he 2nd position text when only text from image frames (i.e., gui text)
re used. However, we did not see any significant improvements in the
umber of true positives ranked in the first position (p-value = 0.81).
hese initial results look promising and provide avenues for future en-
ancements to our approach.

A key finding from our assessment is that when a CVE ID is not ex-
licitly mentioned, text from video image frames is the most informative
relevant) resource to be used for linking videos to vulnerabilities.

We also believe that similar to how traceability links are generated
etween unannotated commits and issues, techniques such as comparing
ideo and vulnerability publication dates and identifying the presence of
he vulnerable source code elements (class or method names) within the
ontent of videos can be used to improve the accuracy of our proposed
pproach. Also, creators of vulnerability related videos should follow
ore rigorously existing screencast best practices (e.g., [7]) and pro-

ide more precise and concise vulnerability information in their videos
o allow for easier integration (linking) of video content with other soft-
are artifacts. For example, CVE IDs, name of the affected project being
emonstrated, and keywords from the vulnerability classification should
e explicitly included in the video.

Another finding from our case study is that both short and concise
nformation sources such as video titles and description, and verbose
ources such as video speech and text displayed in image frames are
mportant for our linking approach. For example, Fig. 11 (a) and 11(b)
bove show that the results obtained by using only text extracted from
mage frames as queries are ranked higher than the other information
ources on average, probably because they contain more content than
he short descriptions/titles.

.3. Discussion

As our evaluation shows, although videos and NVD contain differ-
nt types of information describing known vulnerabilities, similarities
nd semantics captured by these artifacts can be used to allow for the
inking of software knowledge resources (NVD) with video content de-
cribing such vulnerabilities. As the case study further illustrates, our
odeling approach can indeed allow for the integration of these hetero-

eneous knowledge resources by transforming these traditional infor-
ation silos into information hubs, where knowledge can be seamlessly

hared and reused across resource borders. In addition, our ontology-
ased knowledge model provides a machine-human readable represen-
ation that supports incremental knowledge population based on the
pen World Assumption.

Furthermore, our previously established bi-directional traceability
inks from Maven Central to NVD security vulnerabilities [4 , 22] enable
s to infer indirect traceability links between screencasts and Maven

https://www.dbpedia-spotlight.org/
https://wiki.dbpedia.org

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

Fig. 11. Reciprocal Rank results after narrowing the vulnerability search space.

Table 3

Examples of vulnerabilities and their associated YouTube videos.

Vulnerability Related Video Vulnerable Projects # (Maven Central) Dependencies on Vulnerable Project

CVE-2017-5638 https://youtu.be/od92kR0MnC4 Apache Struts 2.3.16.3 5927

Apache Struts 2.3.16.1 5340

Apache Struts 2.3.8 1173

Apache Struts 2.3.16 585

p

p

i

h

b

t

b

d

d

h

k

S

c

w

t

i

i

t

m

b

b

C

p

r

v

e

d

p

t

0

6

c

o

v

o

a

c

t

w

t

c

i

b

M

a

g

d

b

d

s

p

T

t

i

t

W

p

t

p

i

N

c

t

p

s
roject dependencies. The Maven repository includes many vulnerable
rojects/components that are commonly reused within existing projects
n the Maven ecosystem. More specifically, while a project might not
ave any direct vulnerability reported in the NVD database, it can still
e potentially affected indirectly through its dependency on other (ex-
ernal) vulnerable libraries and components. Providing traceability links
etween screencasts describing vulnerabilities found in projects (or their
irect/indirect dependent components) can provide developers with ad-
itional insights in the potential threats their project is exposed to and
elp them to mitigate the security issues.

To illustrate how our knowledge model can be used to infer new
nowledge, we revisit our motivating example (scenario #1) from
ection 2 , where Bob is following the instructions shown in a screen-
ast implementing his project without being aware that the component
hich is explained in the screencast is using (dependent) a vulnerable

hird-party API. Given our knowledge model, we are now able to first
dentify vulnerable APIs or components Bob’s project might directly or
ndirectly depend on and then recommend him a screencast that illus-
rates these known vulnerabilities. For example, Table 3 shows the four
ost commonly used Apache Struts releases affected by the vulnera-

ility CVE-2017-5638 and the number of projects dependent on them,
ased on Listing 4 (Section 4.3.1). As shown in the table, 5927 Maven
entral projects declare a dependency on Apache Struts 2.3.16.3. Any
roject that uses, either directly or indirectly, one of these Apache Struts
eleases could benefit from the YouTube video listed in the table. The
ideo not only illustrates how the vulnerability CVE-2017-5638 can be
xploited but also shows how to mitigate it.

It should be noted that the accuracy of these indirect links is depen-
ent on the accuracy of the SBSON-SEVONT alignment (provided by our
revious SV-AF approach [4]) and the SEVONT-VIDONT alignment in-
roduced in this paper. In our previous work, we reported a precision of
.87 and a recall of 0.64 for linking our SBSON-SEVONT ontologies.

. Threats to validity

Our research is introducing a methodology for integrating relevant
ontent from screencast tutorials, which are created by the crowd, with
ther software security knowledge resources. However, some threats to
alidity exist that might affect our reported results and the applicability
f our approach.

Construct Validity : We identify three threats that relate to the tools
nd mechanisms used to obtain our results. The first threat is that our
ase study relies on our ability to mine facts from both YouTube and
he NVD repository to populate our ontologies. A common problem
hen mining software repositories is that these repositories often con-

ain noise in their data, due to data ambiguity, inconsistencies, or in-
ompleteness. Although studies (e.g., [25]) have shown the presence of
ncorrect NVD information, this threat is partly mitigated since vulnera-
ilities published in NVD are curated by security experts. Similarly, the
aven tool ensures that defined project dependencies are fully specified

nd available in the Maven Central repository, limiting not only ambi-
uities and inconsistencies at the project build but also at the complete
ataset level.

Regarding the knowledge extracted from YouTube, not all vulnera-
ility related videos explicitly mention a vulnerability CVE in their title,
escription, or content (i.e., image frames text or speech). As our case
tudy has shown, this can significantly reduce the accuracy of our ap-
roach to automatically link such videos to the related vulnerabilities.
o address this potential limitation, we use the BM25 information re-
rieval approach [23] to identify NVD vulnerabilities that are most sim-
lar to a given video to further improve our alignment between these
wo resources, since BM25 performs well on shorter textual descriptions.

hile we are not able to mitigate this threat completely, different ap-
roaches and techniques (such as reducing the search space) can be used
o improve the linking results.

Another potential threat is the automatic transcription of videos, a
rocess that is prone to errors and potentially can cause CVE IDs not be-
ng correctly transcribed. Using a specialized gazetteer list (e.g., Word-
et [26]) to detect and correct erroneously transcribed CVE IDs can be
onsidered as future work to improve the accuracy of our approach in
erms of identifying these CVE IDs.

The final threat to construct validity is related to the extraction of
roject dependency information. The work in this paper does not con-
ider dependency scopes, configurations, and exclusions during project

https://youtu.be/od92kR0MnC4

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

d

f

d

c

r

r

t

o

[

c

t

t

Y

i

O

c

T

s

i

l

e

t

v

7

t

a

n

w

t

T

e

h

k

t

e

m

e

T

e

t

r
3

a

v

y

a

7

e

s

s

c

n

i

a

y

r

a
i

e

P

i

r

C

t

c

P

a

r

t

[

d

s

l

M

v

K

n

s

a

t

i

o

n

7

e

m

[

t

[

t

H

a

l

a

s

t

p

m

i

s

r

t

i

o

v

f

t

t

t
ependency resolution; this can introduce false positives when identi-
ying potentially vulnerable projects based on transitive project depen-
encies. For future work, we plan to extend our dependency analysis to
over such cases.

Internal validity : One internal threat that potentially can affect our
esults is the quality of the established links from vulnerabilities to
elease builds which we used to answer our RQ. SV-AF approach es-
ablishes these traceability links with a precision of 0.87 and a recall
f 0.64. In addition, we compared SV-AF against a publicly available
27] and a proprietary tool 30 (now open source) [28] ; SV-AF’s accuracy
ompared favorably against the free tool and just below the proprietary
ool.

External validity : In terms of external threats to validity, a potential
hreat is that the presented experiments are not generalizable to non-
ouTube videos and non-NVD vulnerabilities. This threat can be mit-

gated by our modeling approach with its different abstraction layers.
ur domain-specific ontologies (e.g., SEVONT and VIDONT) contain the
ore shared concepts and relations common to that particular domain.
hese domain ontologies can be extended and instantiated to include
ystem level ontologies that support new vulnerability and video repos-
tories. Also, our dataset can be considered incomplete, covering only a
imited number of existing videos and vulnerabilities, limiting the gen-
ralizability of our results. To mitigate this problem, we plan to extend
he datasets as part of our future work to include a larger number of
ideos and vulnerabilities in our analysis.

. Related work

Given the diversity in software development processes and their dis-
ributed nature, there is a need for knowledge integration and sharing
mong software artifacts, to improve knowledge reuse and allow for
ew types of analyses across resource boundaries. Several semantic-
eb based approaches have been proposed that use ontologies to es-

ablish taxonomies in the software engineering domain (e.g., [29 , 30]).
hese ontologies describe and capture domain knowledge of develop-
rs, source code, and other software artifacts. Also, other approaches
ave been proposed to address the issue of seamless integration of these
nowledge resources [5 , 31] . While all these approaches aim to promote
he inference and integration of new knowledge in an existing knowl-
dge base, they have not considered crowd-based (multimedia) docu-
ents as part of their solution space.

Crowd-based documents have become an increasingly popular ref-
rence for learning software development/maintenance related skills.
his has motivated researchers to embark on research in different ar-
as of extracting information from crowd-based documents and linking
hese documents to their associated artifacts [32–34] . More specifically,
ecent work has focused on analyzing tutorial screencasts [1 , 7 , 8 , 10 , 35–
9] , since screencasts contain tacit knowledge shared by developers and
re being frequently produced and used for learning purposes [7] .

In what follows, we discuss the work the closest related to ours, on
ulnerability dependency analysis, semantic-web enabled software anal-
sis research, as well as mining and linking of crowd-based documents
nd screencasts.

.1. Vulnerability analysis in software dependencies

Several static vulnerability analysis and detection approaches (tools)
xist (e.g. [28 , 40–43]) that identify vulnerability dependencies in the
ource code. Common to these approaches is that they identify and track
ecurity vulnerabilities and their dependencies at the project level. In
ontrast, our approach also includes a global dependency analysis of vul-
erabilities across project boundaries. Our approach therefore not only
30 The tool in [28] was proprietary at the time the evaluation was performed

n our previous work.

[

e

m

k
llows us to integrate different information resources as part of the anal-
sis, but also provides us with the ability to take advantage of semantic
easoning services to infer implicit facts about the vulnerable code us-
ges within the system, to support bi-directional dependency analysis –
ncluding both impacts to external dependencies and vice versa.

Among the existing research most closely related to ours are Cadariu
t al. [44] , Plate et al. [28] , Ponta et al. [45] , Decan et al. [46] , and
ashchenko et al. [47] . Cadariu et al. [44] introduce in their Vulnerabil-
ty Alert Service (VAS) an approach that notifies users if a vulnerability is
eported for software systems. VAS depends on the OWASP Dependency-
heck tool [27] . Plate et al. [28] proposed a technique that supports
he impact analysis of vulnerability based on the dynamic analysis of
ode changes introduced by security fixes. Their work was extended by
onta et al. [45] to include static analysis of code changes and provide
 novel combination of static and dynamic analysis. Among the other
elated work, Decan et al. [46] perform an empirical study of the evolu-
ion of vulnerabilities within the npm ecosystem and Pashchenko et al.
47] propose an approach for the reliable measurement of vulnerable
ependencies in OSS libraries.

Several studies have shown that projects are becoming increasingly
usceptible to security vulnerabilities due to the rate at which software
ibraries are reused within projects. Alqahtani et al. [48] show 750
aven projects (0.062% of all Maven projects) contain known security

ulnerabilities that have been reported in the NVD database. A study by
ula et al. [49] on 4600 GitHub projects showed that 81.5% of them do
ot update their direct dependencies on vulnerable libraries. A similar
tudy by Eghan et al. [50] on the dependencies of four popular vulner-
ble projects showed that 36.7% of these projects’ dependents updated
heir dependency to more vulnerable versions. Our approach of provid-
ng traceability links between vulnerabilities, project dependencies, and
nline screencasts addresses the lack of awareness about security vul-
erabilities.

.2. Semantic-Web enabled software analysis

Hyland-Wood et al. [51] proposed an OWL ontology of software
ngineering concepts, including classes, tests, metrics, and require-
ents. Bertoa et al. [52] focused on software measurement. Witte et al.

18] used text mining and static code analysis to map documentation
o source code in RDF for software maintenance purposes. Yu et al.
29] also model static source code information using an ontology and
ake advantage of SWRL rules to infer common bugs in the source code.
appel et al. [30] proposed KOntoR, which conceptualizes knowledge
bout software artifacts, such as the programming language used or
icensing models. Dietrich et al. [53] developed a tool that scans the
bstract syntax tree of Java programs and detects design patterns, de-
cribed in terms of OWL ontologies, for documentation purposes.

Several researchers (e.g., [31 , 54]) have modeled software evolu-
ion knowledge found in software repositories as ontologies. Their ap-
roaches integrate different artifacts to facilitate common repository
ining activities. Tappolet [55] presents a roadmap towards integrat-

ng semantics of different software project repositories in three main
teps: 1) data representation using RDF/OWL ontologies, 2) intra-project
epository integration, and finally 3) inter-project repository integra-
ion. Based on these ideas, Kiefer et al. [54] presented EvoOnt, which
ntroduces and integrates the source code, bug and versioning system
ntologies. EvoOnt also takes advantage of Semantic Web reasoning ser-
ices to detect bad code smells, calculate metrics, and to extract data
or visualizing changes in code over time. Iqbal et al. [56] presented
heir Linked Data Driven Software Development (LD2SD) methodology
o provide a uniform and centralized RDF-based access to JIRA bug
rackers, Subversion, developer blogs, project mailing lists. Wursch et al.
5] presented SEON, a family of ontologies that describe many differ-
nt facets of a software’s life-cycle. SEON is unique in that it comprises
ultiple abstraction layers. Our core ontologies build upon the SEON

nowledge model, which we further extend to support additional soft-

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

w

i

k

t

t

i

o

7

l

t

o

p

s

O

t

t

e

n

O

i

m

B

v

n

w

w

m

7

a

[

s

s

a

i

p

r

p

e

u

h

f

R

f

p

e

o

i

a

d

p

f

e

G

o

a

d

t

m

8

i

p

a

s

p

l

e

p

s

d

d

d

u

d

d

p

c

c

w

(

d

b

l

o

I

a

v

l

(

p

t

k

a

w

p

i

l

b

m

w

d

D

R

are artifacts (e.g., build systems ontology, Video ontology, vulnerabil-
ty ontologies) and additional reasoning.

Given that these approaches are all based on RDF as a standardized
nowledge representation format, we can envision interesting interac-
ions between our knowledge models and the ontologies presented by
he other authors. Such extensions could lead to a completely new fam-
ly of software analysis services or at least simplify the implementation
f existing ones.

.3. Linking crowd-based documents

Jiau and Yang [32] , proposed an approach that recovers traceability
inks between API classes and question and answers on StackOverflow
o improve document coverage. Their goal is to reduce the inequality
f crowdsourced API documents in StackOverflow since a larger pro-
ortion of existing discussions and “question and answers ” address a
maller portion of topics. Barzilay et al. in [33] , developed Example
verflow, which is a code search tool on top of StackOverflow to ex-

ract high-quality code examples. As part of their empirical analysis,
hey studied the type of questions posted on StackOverflow and to what
xtent these questions could be answered by their approach. Subrama-
ian et al. [34] proposed a method for linking code examples on Stack-
verflow to API documentation. Based on the proposed method, they

mplemented a tool, Baker, that links code snippets to Java classes and
ethods or JavaScript functions, with an observed precision of 97%.
ao et al. [35 , 36] proposed a method of tracking user activities and de-
eloped a tool, ActivitySpace, to support inter-application information
eeds of software developers. The tool reduces the efforts of developers
hile locating documents and recalling their history activities in daily
ork. In contrast to this existing research, our work focuses on analyzing
ultimedia crowd-based documentation [1] .

.4. Analyzing software engineering screencasts

The first study in the area of using crowd-based screencasts to share
nd document developer knowledge was conducted by MacLeod et al.
7] . They investigated the goals and techniques of developers in creating
creencasts and the benefits and challenges of this type of knowledge
haring. As part of their work, they analyzed 20 tutorial screencasts
nd interviewed 10 developers/YouTubers. They found that by creat-
ng screencasts, developers demonstrate and share how to customize a
rogram, the challenges they encountered and their development expe-
iences, solutions to problems, how to apply design patterns, and their
rogramming language knowledge. They also observed that develop-
rs are creating these screencasts to promote themselves and gain rep-
tation by helping others. An extension of this study [39] compared
ow Ruby on Rails screencasts are hosted and shared on YouTube (a
ree platform) to how they are shared on a formal screencast site like
ailsCasts, 31 which is a paid platform. Finally, they extracted guidelines

or screencast creators to produce clear and understandable screencasts.
In earlier work [10] , we used the speech component of screencasts to

rovide relevant information to various software engineering tasks. For
xample, by leveraging information extraction techniques (e.g., LDA)
n the spoken text, we were able to extract steps of use-case scenar-
os from the videos. In an extension of the previous work, we proposed
 feature location approach [1] that links software application features
emonstrated in how-to-tutorials to their corresponding source code im-
lementation.

Ponzanelli et al. [8 , 37] developed an approach to extract relevant
ragments of software development tutorial videos and link them to rel-
vant StackOverflow discussions by mining the (captioned) speech and
UI content of the video tutorials. In line with the aforementioned works
n software development tutorial videos, Yadid et al. [38] developed an
31 http://railscasts.com .

pproach to extract code from programming video tutorials to enable
eep indexing of them. They attempted to consolidate code across mul-
iple image frames of the videos and used statistical language models to
ake corrections on the extracted code.

. Conclusion and future work

Developers often resort to a variety of knowledge resources, includ-
ng informal resources such as screencasts and video tutorials when com-
rehending and analyzing software systems. Though many screencasts
nd video tutorials exist, these resources are rarely integrated with other
oftware-related knowledge resources. The objective of our research is to
rovide a standardized ontological representation that allows for seam-
ess knowledge integration at different abstraction levels across knowl-
dge resource boundaries. Having this knowledge integration not only
rovides developers with direct access to vulnerability information de-
cribed in a screencast content, but also allows us to link vulnerability
escriptions to relevant screencasts and dependency information. In ad-
ition, our approach also allows developers to identify screencasts that
emonstrate such attacks and provides developers who are indirectly
sing vulnerable libraries in their project (e.g., through Maven depen-
encies) with insights on how to reduce the potential impact of being
irectly or indirectly exposed to a vulnerability.

We evaluate the flexibility and applicability of our approach to 1)
rovide bi-directional links between known vulnerabilities and screen-
asts published on YouTube, and 2) link relevant NVD entries, screen-
asts, and build dependencies to provide developers and maintainers
ith valuable insights during vulnerability management and impact

ripple effect) analysis. We performed a case study on 48 videos that
escribe the exploits of known vulnerabilities and how these vulnera-
ilities can be fixed. Our evaluation shows our approach can successfully
ink relevant vulnerabilities and screencasts with an average precision
f 98% and an average recall of 54% when vulnerability identifiers (CVE
D) are explicitly mentioned in the videos. When no direct reference to
 CVE ID exists in the screencast, our approach was still able to link
ideo-vulnerability descriptions, with up to 100% of the time relevant
inks being ranked in the 2nd position of our results set.

As part of our future work, we plan to make the filtering process
introduced in the case study) to reduce the search space an integrated
art of our linking approach by extending our current knowledge model
o include a CWE ontology and link to DBpedia. Having such a unified
nowledge representation, will allow us to infer additional knowledge
nd further restrict our search space during the linking process of videos
hich do not contain a CVE ID. We also plan to conduct another em-
irical study to improve the generalizability of our approach by cover-
ng different vulnerability and video repositories. In addition, having a
arger dataset would also allow us to classify vulnerability related videos
ased on their popularity and content. We also consider extending our
odeling approach to integrate videos and their content with other soft-
are artifacts such as blogs and Q/A forums (e.g., StackOverflow) to
erive new application scenarios for our modeling approach.

eclaration of Competing Interest

None.

eferences

[1] P. Moslehi , B. Adams , J. Rilling , Feature Location using Crowd-based Screencasts, in:
Proceedings of the 15th IEEE Working Conference on Mining Software Repositories
(MSR), 2018 .

[2] P.T. Devanbu , S. Stubblebine , Software engineering for security: a roadmap, in:
Proceedings of the Conference on the Future of Software Engineering, 2000,
pp. 227–239 .

[3] A.E. Hassan , The road ahead for Mining Software Repositories, in: 2008 Frontiers of
Software Maintenance, 2008, pp. 48–57 .

[4] S.S. Alqahtani , E.E. Eghan , J. Rilling , SV-AF - A Security Vulnerability Analysis
Framework, in: IEEE 27th International Symposium on Software Reliability Engi-
neering (ISSRE), 2016, pp. 219–229 .

http://railscasts.com
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0004

E.E. Eghan, P. Moslehi and J. Rilling et al. Information and Software Technology 117 (2020) 106197

[

[

[
[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[5] M. Würsch , G. Ghezzi , M. Hert , G. Reif , H.C. Gall , SEON: a pyramid of ontologies for
software evolution and its applications, Computing 94 (11) (Nov. 2012) 857–885 .

[6] I. Duncan , L. Yarwood-Ross , C. Haigh , YouTube as a source of clinical skills educa-
tion, Nurse Educ. Today 33 (12 (December)) (2013) 1576–1580 .

[7] L. MacLeod , M.-A. Storey , A. Bergen , Code, Camera, Action: How Software Develop-
ers Document and Share Program Knowledge Using YouTube, 2015 IEEE 23rd Int.
Conf. Progr. Compr., 2015 .

[8] L. Ponzanelli , et al. , Too long; didn’t watch!, in: Proceedings of the 38th International
Conference on Software Engineering - ICSE ’16, 2016, pp. 261–272 .

[9] P.K. Manadhata , J.M. Wing , An attack surface metric, IEEE Trans. Softw. Eng. 37
(3) (2011) 371–386 .

10] P. Moslehi , B. Adams , J. Rilling , On mining crowd-based speech documentation,
in: Proceedings - 13th Working Conference on Mining Software Repositories, MSR
2016, 2016 .

11] J. Williams , A. Dabirsiaghi , The unfortunate reality of insecure libraries, Asp. Secur.
Inc (2012) 1–26 .

12] I. Sonatype , Maven: The Definitive Guide, O’Reilly, 2008 .
13] T. Berners-Lee , J. Hendler , O. Lassila , The Semantic Web, Sci. Am. 284 (5 (May))

(2001) 34–43 .
14] D.L. McGuinness , F. Van Harmelen , Owl web ontology language overview, W3C

Recomm. 10.2004-03 2004 (February) (2004) 1–12 .
15] C.J.H. Mann , The Description Logic Handbook – Theory, Implementation and Ap-

plications, Kybernetes 32 (9/10) (2003) 2003.06732iae.006, Dec .
16] B. DuCharme , Learning SPARQL, 2n Edition, O’Reilly Media, 2011 .
17] B. Henderson-Sellers , Bridging metamodels and ontologies in software engineering,

J. Syst. Softw. 84 (2 (February)) (2011) 301–313 .
18] R. Witte , Y. Zhang , J. Rilling , Empowering software maintainers with semantic web

technologies, in: Eur. Conf. Semant. Web Res. Appl., 2007, pp. 37–52 .
19] C. Atkinson , M. Gutheil , K. Kiko , On the relationship of ontologies and models, in:

Proc. 2nd Work. MetaModelling Ontol. WoMM06 LNI P96 Gesellschaft fur Inform.
Bonn, 2006, pp. 47–60 .

20] A. Kimmig , S. Bach , M. Broecheler , B. Huang , L. Getoor , A short introduction to
probabilistic soft logic, in: Proceedings of the NIPS Workshop on Probabilistic Pro-
gramming: Foundations and Applications, 2012, pp. 1–4 .

21] M. Cheriet , N. Kharma , C. Liu , C. Suen , Character Recognition Systems: A Guide For
Students and Practitioners, Wiley-Interscience, 2007 .

22] S.S. Alqahtani , E.E. Eghan , J. Rilling , Recovering Semantic Traceability Links be-
tween APIs and Security Vulnerabilities: An Ontological Modeling Approach, in:
Proceedings - 10th IEEE International Conference on Software Testing, Verification
and Validation, ICST 2017, 2017, pp. 80–91 .

23] C.D. Manning , P. Raghavan , H. Schütze , An Introduction to Information Retrieval,
Cambridge University Press, 2009 .

24] I. Keivanloo , Source Code Similarity and Clone Search, Concordia University, 2013 .
25] V.H. Nguyen , F. Massacci , The (un)reliability of NVD vulnerable versions data, in:

Proceedings of the 8th ACM SIGSAC symposium on Information, computer and com-
munications security - ASIA CCS ’13, 2013, pp. 493–498 .

26] S. Deerwester , S.T. Dumais , G.W. Furnas , T.K. Landauer , R. Harshman , Indexing by
latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (6) (1990) 391–407 .

27] J. Long, S. Springett, and W. Stranathan, “OWASP Dependency Check, ” 2015. [On-
line]. Available: https://www.owasp.org/index.php/OWASP_Dependency_Check .
[Accessed: 30-Dec-2018].

28] H. Plate , S.E. Ponta , A. Sabetta , Impact assessment for vulnerabilities in open-source
software libraries, in: 2015 IEEE 31st Int. Conf. Softw. Maint. Evol. ICSME 2015 -
Proc., 2015, pp. 411–420 .

29] L. Yu , J. Zhou , Y. Yi , P. Li , Q. Wang , Ontology model-based static analysis on java
programs, in: 2008 32nd Annual IEEE International Computer Software and Appli-
cations Conference, 2008, pp. 92–99 .

30] H.-J. Happel , A. Korthaus , S. Seedorf , P. Tomczyk , KOntoR: an ontology-enabled
approach to software reuse, in: Proc. Of The 18Th Int. Conf. On Software Engineering
And Knowledge Engineering, 2006 .

31] J. Tappolet , C. Kiefer , A. Bernstein , Semantic web enabled software analysis, Web
Semant. Sci. Serv. Agents World Wide Web 8 (2–3 (July)) (2010) 225–240 .

32] H.C. Jiau , F.-P. Yang , Facing up to the inequality of crowdsourced API documenta-
tion, ACM SIGSOFT Softw. Eng. Notes 37 (1 (January)) (2012) 1 .

33] O. Barzilay , C. Treude , A. Zagalsky , Facilitating Crowd Sourced Software Engineer-
ing via Stack Overflow, in: Finding Source Code on the Web for …, New York,
Springer New York, 2013, pp. 1–19 .
34] S. Subramanian , L. Inozemtseva , R. Holmes , Live API documentation, in: Proceedings
of the 36th International Conference on Software Engineering - ICSE 2014, 2014,
pp. 643–652 .

35] L. Bao , Z. Xing , X. Wang , B. Zhou , Tracking and analyzing cross-cutting activities in
developers’ daily work, in: 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2015), 2015, pp. 277–282 .

36] L. Bao , J. Li , Z. Xing , X. Wang , X. Xia , B. Zhou , Extracting and analyzing time-series
HCI data from screen-captured task videos, Empir. Softw. Eng. 22 (1) (Feb. 2017)
134–174 .

37] L. Ponzanelli , et al. , Automatic Identification and Classification of Software Devel-
opment Video Tutorial Fragments, IEEE Trans. Softw. Eng. (2017) 1 .

38] S. Yadid , E. Yahav , Extracting code from programming tutorial videos, in: Proceed-
ings of the 2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software - Onward! 2016, 2016, pp. 98–
111 .

39] L. MacLeod , A. Bergen , M.-A. Storey , Documenting and sharing software knowledge
using screencasts, Empir. Softw. Eng. 22 (3 (June)) (2017) 1478–1507 .

40] M. Hirzel , D. Von Dincklage , A. Diwan , M. Hind , Fast online pointer analysis, ACM
Trans. Program. Lang. Syst. 29 (2 (April)) (2007) 11–66 .

41] S. Mancoridis , B.S. Mitchell , Y. Chen , E.R. Gansner , Bunch: A clustering tool for the
recovery and maintenance of software system structures, in: Software Maintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference on, 1999, pp. 50–59 .

42] J.-D. Choi , M. Burke , P. Carini , Efficient flow-sensitive interprocedural computa-
tion of pointer-induced aliases and side effects, in: Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’93,
1993, pp. 232–245 .

43] N. Rutar , C.B. Almazan , J.S. Foster , A Comparison of Bug Finding Tools for
Java, in: 15th International Symposium on Software Reliability Engineering, 2004,
pp. 245–256 .

44] M. Cadariu , E. Bouwers , J. Visser , A. Van Deursen , Tracking known security vulner-
abilities in proprietary software systems, in: 2015 IEEE 22nd Int. Conf. Softw. Anal.
Evol. Reengineering, SANER 2015 - Proc., 2015, pp. 516–519 .

45] S.E. Ponta , H. Plate , A. Sabetta , Beyond metadata: code-centric and usage-based
analysis of known vulnerabilities in open-source software, in: 2018 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME), 2018,
pp. 449–460 .

46] A. Decan , T. Mens , E. Constantinou , On the impact of security vulnerabilities
in the npm package dependency network, in: Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories - MSR ’18, 2018, pp. 181–
191 .

47] I. Pashchenko , H. Plate , S.E. Ponta , A. Sabetta , F. Massacci , Vulnerable open source
dependencies, in: Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement - ESEM ’18, 2018, pp. 1–10 .

48] S.S. Alqahtani , E.E. Eghan , J. Rilling , Tracing known security vulnerabilities in soft-
ware repositories - a semantic web enabled modeling approach, Sci. Comput. Pro-
gram. 121 (Feb. 2016) 153–175 .

49] R.G. Kula , D.M. German , A. Ouni , T. Ishio , K. Inoue , Do developers update
their library dependencies? Empir. Softw. Eng. 23 (1 (February)) (2018) 384–
417 .

50] E.E. Eghan , S.S. Alqahtani , C. Forbes , J. Rilling , API trustworthiness: an ontological
approach for software library adoption, Softw. Qual. J. (2019) 1–46 .

51] D. Hyland-Wood , D. Carrington , S. Kaplan , Toward a Software Maintenance Method-
ology using Semantic Web Techniques, in: 2006 Second International IEEE Work-
shop on Software Evolvability (SE’06), 2006, pp. 23–30 .

52] M.F. Bertoa , A. Vallecillo , F. García , An Ontology for Software Measurement, in:
Ontologies for Software Engineering and Software Technology, Berlin Heidelberg,
Springer, 2006, pp. 175–196 .

53] J. Dietrich , C. Elgar , A Formal Description of Design Patterns Using OWL, in: Aus-
tralian Software Engineering Conference, 2005, pp. 243–250 .

54] C. Kiefer , A. Bernstein , J. Tappolet , Mining Software Repositories with iSPAROL and
a Software Evolution Ontology, Fourth International Workshop on Mining Software
Repositories (MSR’07:ICSE Workshops 2007), 2007 10–10 .

55] J. Tappolet , Semantics-aware software project repositories, in: Proceedings of the
European Semantic Web Conference, 8, Ph.D. Symposium, 2008, p. 8 .

56] A. Iqbal , G. Tummarello , M. Hausenblas , O.-E. Ureche , LD2SD: linked data driven
software development, International Conference on Software Engineering & Knowl-
edge Engineering, 2009 .

http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0026
https://www.owasp.org/index.php/OWASP_Dependency_Check
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30204-6/sbref0055

	The missing link - A semantic web based approach for integrating screencasts with security advisories
	1 Introduction
	2 Problem statement
	2.1 Motivating examples
	2.2 Research objective

	3 Background
	3.1 Crowd-based multimedia documentation
	3.2 Security vulnerabilities
	3.3 Dependency management - Maven
	3.4 Ontologies and semantic web
	3.5 SV-AF: security vulnerability analysis framework

	4 Methodology
	4.1 Overview
	4.2 Fact extraction process
	4.2.1 Fact extraction from video artifacts
	4.2.2 Fact extraction from vulnerability artifacts
	4.2.3 Fact extraction from Maven artifacts

	4.3 Knowledge modeling - extending SV-AF with knowledge from screencast repositories
	4.3.1 Ontology alignment and knowledge inferencing

	5 Case study: CVE-2017-5638
	5.1 Case study setup
	5.1.1 Dataset
	5.1.2 Applying our methodology
	5.1.3 Evaluation measures

	5.2 Case study results
	5.3 Discussion

	6 Threats to validity
	7 Related work
	7.1 Vulnerability analysis in software dependencies
	7.2 Semantic-Web enabled software analysis
	7.3 Linking crowd-based documents
	7.4 Analyzing software engineering screencasts

	8 Conclusion and future work
	Declaration of Competing Interest
	References

